Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Thanh Hải
Xem chi tiết
Nguyễn Lê Phước Thịnh
6 tháng 7 2023 lúc 21:28

a: góc ACM=1/2*sđ cung AM=90 độ

góc BAD+góc ABD=90 độ

góc MAC+góc AMC=90 độ

mà góc ABD=góc AMC

nên góc BAD=góc MAC

b: góc AEB=góc ADB=90 độ

=>AEDB nội tiếp

chichi
Xem chi tiết
Akai Haruma
21 tháng 5 2021 lúc 23:15

Ủa H là điểm nào thế bạn?

Sách Giáo Khoa
Xem chi tiết
Quang Duy
11 tháng 4 2017 lúc 16:32

Ta có: = - = 80o – 30o = 50o (1)

- ∆MBC là tam giác cân (MB= MC) nên = = 55o (2)

- ∆MAB là tam giác cân (MA=MB) nên = 50o (theo (1))

Vậy = 180o – 2. 50o = 80o

= sđcung BCD (số đo góc nội tiếp bằng nửa số đo của cung bị chắn)

=> sđ cung BCD = 2 = 2. 80o = 160o

Mà sđ cung BC = = 70o (số đo ở tâm bằng số đo cung bị chắn)

Vậy cung DC = 160o – 70o = 90o (vì C nằm trên cung nhỏ cung BD)

Suy ra = 90o (4)

∆MAD là tam giác cân (MA= MD)

Suy ra = 180o – 2.30o = 120o (5)

∆MCD là tam giác vuông cân (MC= MD) và = 90o

Suy ra = = 45o (6)

= 100o theo (2) và (6) và vì CM là tia nằm giữa hai tia CB, CD



Đặng Phương Nam
11 tháng 4 2017 lúc 17:57

Ta có: = - = 80o – 30o = 50o (1)

- ∆MBC là tam giác cân (MB= MC) nên = = 55o (2)

- ∆MAB là tam giác cân (MA=MB) nên = 50o (theo (1))

Vậy = 180o – 2. 50o = 80o

= sđcung BCD (số đo góc nội tiếp bằng nửa số đo của cung bị chắn)

=> sđ cung BCD = 2 = 2. 80o = 160o

Mà sđ cung BC = = 70o (số đo ở tâm bằng số đo cung bị chắn)

Vậy cung DC = 160o – 70o = 90o (vì C nằm trên cung nhỏ cung BD)

Suy ra = 90o (4)

∆MAD là tam giác cân (MA= MD)

Suy ra = 180o – 2.30o = 120o (5)

∆MCD là tam giác vuông cân (MC= MD) và = 90o

Suy ra = = 45o (6)

= 100o theo (2) và (6) và vì CM là tia nằm giữa hai tia CB, CD



dia fic
Xem chi tiết
Cô Hoàng Huyền
Xem chi tiết
Nguyễn Tùng Lâm
9 tháng 11 2021 lúc 21:21

loading...  

Khách vãng lai đã xóa
phương trần
Xem chi tiết
Nguyễn Thị Trang
17 tháng 4 2020 lúc 17:07

a) Xét (O) có :

AB là tiếp tuyến tại B

AC là tiếp tuyến tại C 

AB cắt AC tại A

\(\Rightarrow\widehat{ABO}=\widehat{ACO}=90^o\)và OA là p/g \(\widehat{BOC}\)

Xét tg ABOC có \(\widehat{ABO}+\widehat{ACO}=180^o\)Mà 2 góc này đối nhau

\(\Rightarrow\)ABOC là tg nt

b) Xét (O) có 

\(\widehat{ABE}\)là góc tạo bởi tiếp tuyến AB và dây BE

\(\widehat{BDE}\)là góc nt chắn cung BE

\(\Rightarrow\widehat{ABE}=\widehat{BDE}=\frac{1}{2}sđ\widebat{BE}\)

Xét \(\Delta ABEvà\Delta ADB:\)

\(\widehat{BAD}\)chung

\(\widehat{ABE}=\widehat{BDE}\)

\(\Rightarrow\Delta ABE\infty\Delta ADB\left(gg\right)\)

\(\Rightarrow\frac{AB}{AD}=\frac{AE}{AB}\Rightarrow AB^2=AD.AE\)

c) Vì OA là p/g \(\widehat{BOC}\Rightarrow\widehat{BOA}=\widehat{COA}=\frac{\widehat{BOC}}{2}\)

Do ABOC là tg nt\(\Rightarrow\widehat{BOA}=\widehat{BCA}\)(cùng chắn cung AB)

Suy ra \(\widehat{AOC}=\widehat{ACB}\)

Khách vãng lai đã xóa
Lê Phương Mai
Xem chi tiết
Nguyễn Văn A
16 tháng 3 2023 lúc 21:57

*Chứng minh AMNC là tứ giác nội tiếp.

Ta có AB=BD nên △ABD cân tại B.

\(\Rightarrow\widehat{ADB}=\widehat{BAD}\left(1\right)\)

Trong (O) có: \(\widehat{MAB}\) là góc tạo bởi tiếp tuyến và dây cung chắn cung AB.

\(\widehat{ADB}\) là góc nội tiếp chắn cung AB.

\(\Rightarrow\widehat{MAB}=\widehat{ADB}\left(2\right)\)

Tứ giác ABCD nội tiếp có \(\widehat{BCN}\) là góc ngoài ở đỉnh C.

\(\Rightarrow\widehat{BCN}=\widehat{BAD}\left(3\right)\)

(1), (2), (3) \(\Rightarrow\widehat{MAB}=\widehat{BCN}\).

\(\Rightarrow\)AMNC nội tiếp.

*Chứng minh yêu cầu đề bài.

AMNC nội tiếp \(\Rightarrow\widehat{AMN}=\widehat{ACD}\) (\(\widehat{ACD}\) là góc ngoài ở đỉnh C).

Mà \(\widehat{ACD}=\widehat{ABD}\) (ABCD nội tiếp)

\(\Rightarrow\widehat{AMN}=\widehat{ABD}\) (đpcm)

Sách Giáo Khoa
Xem chi tiết
Linh subi
17 tháng 4 2017 lúc 9:50

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

anh thu
20 tháng 4 2017 lúc 22:00

a, ta có ^BAC=900(góc nội tiếp chắn nửa đường tròn đường kính BC)

^MDC=900(góc nội tiếp chắn nửa đường tròn đường kính MC)

=>^BAC=^MDC(=900)

=>tứ giác ABCD nội tiếp (hai đỉnh A và D kề nhau cùng nhìn cạnh BC dưới hai góc bằng nhau)

b. vì tứ giác ABCD nội tiếp (câu a) nên ^ABD=^ACD (hai góc nội tiếp cùng chắn cung AD)

c, ta có bốn điểm D,S,C,M cùng thuộc đường tròn đường kính MC

=>tứ giác DSCM nội tiếp

=>^ADM=^SCM (cùng bù với ^MDS)

Mà ADCB nội tiếp nên ^ADM=^MCB( hai góc nội tiếp cùng chắn cung AB)

Do đó ^SCM=^MCB

=>CA là tia phân giác ^SCB

Duyên Kuti
27 tháng 2 2019 lúc 22:07

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

a) Ta có:\(\widehat{BAC}=90^o\) ⇒ A ∈ đường tròn đường kính BC.

D ∈ đường tròn đường kính MC

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

⇒ D ∈ đường tròn đường kính BC

⇒ A, B, C, D cùng thuộc đường tròn đường kính BC

hay tứ giác ABCD nội tiếp.

b) Xét đường tròn đường kính BC:

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9 đều là góc nội tiếp chắn cung Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

c) + Trong đường tròn đường kính MC:

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9 đều là các góc nội tiếp cùng chắn cung Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

+ Trong đường tròn đường kính BD:

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9 đều là các góc nội tiếp chắn cung Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

Giải bài 97 trang 105 SGK Toán 9 Tập 2 | Giải toán lớp 9

Hương Giang Vũ
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
1 tháng 5 2016 lúc 21:51

Cho hình thang cân ABCD (BC//AD), hai đường chéo AC, BD cắt nhau tại điểm O sao cho \widehat{BOC} = 60 độ. Gọi M,N,P,Q lần lượt là trung điểm của các đoạn thẳng BC,OA,AB,CD.a) Chứng minh tứ giác DMNC nội tiếp đượcb) Chứng minh tam giác MNQ là tam giác đềuc) So sánh các góc \widehat{MQP}, \widehat{QND}, \widehat{NMC} d) Chứng minh trực tâm của tam giác MNQ thẳng hàng với O, I 

Big City Boy
Xem chi tiết
Nguyễn Ngọc Huy Toàn
9 tháng 2 2022 lúc 21:55

a) Ta có B,C,F,E cùng thuộc đường tròn (O) => tứ giác BCEF nội tiếp

BCEF là hình thang cân

b) Ta có góc BAE = 90 độ - góc ABC = 90 độ  - góc AFC = góc CAF

Suy ra: góc BAE = góc CAF

c) Ta có BH⊥AC

CF⊥AC

Suy ra BH//CF(1)

 CH//BF(2)

Từ (1),(2)⇒tứ giác BHCF là hình bình hành

Mà I là trung điểm của BC

Suy ra I là trung điểm của HF hay I,H,F thẳng hàng