Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Kayoko
Xem chi tiết
An Thy
2 tháng 7 2021 lúc 9:38

a) \(\left(4\sqrt{2}+\sqrt{30}\right)\left(\sqrt{5}-\sqrt{3}\right).\sqrt{4-\sqrt{15}}\)

\(=\left(4\sqrt{10}-4\sqrt{6}+\sqrt{150}-\sqrt{90}\right).\sqrt{\dfrac{8-2\sqrt{15}}{2}}\)

\(=\left(4\sqrt{10}-4\sqrt{6}+\sqrt{25.6}-\sqrt{9.10}\right).\sqrt{\dfrac{\left(\sqrt{5}\right)^2-2\sqrt{5}.\sqrt{3}+\left(\sqrt{3}\right)^2}{2}}\)

\(=\left(4\sqrt{10}-4\sqrt{6}+5\sqrt{6}-3\sqrt{10}\right).\sqrt{\dfrac{\left(\sqrt{5}-\sqrt{3}\right)^2}{2}}\)

\(=\left(\sqrt{10}+\sqrt{6}\right).\dfrac{\left|\sqrt{5}-\sqrt{3}\right|}{\sqrt{2}}=\sqrt{2}.\left(\sqrt{5}+\sqrt{3}\right).\dfrac{\sqrt{5}-\sqrt{3}}{\sqrt{2}}\)

\(=\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)=2\)

 

Nguyễn Lê Phước Thịnh
2 tháng 7 2021 lúc 9:33

a) Ta có: \(\left(4\sqrt{2}+\sqrt{30}\right)\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{4-\sqrt{15}}\)

\(=\sqrt{8-2\sqrt{15}}\cdot\left(4+\sqrt{15}\right)\left(\sqrt{5}-\sqrt{3}\right)\)

\(=\left(\sqrt{5}-\sqrt{3}\right)^2\cdot\left(4+\sqrt{15}\right)\)

\(=\left(8-2\sqrt{15}\right)\left(4+\sqrt{15}\right)\)

\(=32+8\sqrt{15}-8\sqrt{15}-30\)

=2

 

Ngọc Mai
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 9 2021 lúc 21:08

Bài 2: 

\(x=\sqrt{4+2\sqrt{3}}=\sqrt{3}+1\)

Ta có: \(P=x^2-2x+2020\)

\(=4+2\sqrt{3}-2\left(\sqrt{3}-1\right)+2020\)

\(=4+2\sqrt{3}-2\sqrt{3}+2+2020\)

=2026

Nguyễn Lê Phước Thịnh
12 tháng 9 2021 lúc 21:03

Bài 1: 

\(A=-\dfrac{3}{4}\cdot\sqrt{9-4\sqrt{5}}\cdot\sqrt{\left(-8\right)^2\cdot\left(2+\sqrt{5}\right)^2}\)

\(=\dfrac{-3}{4}\cdot8\cdot\left(\sqrt{5}-2\right)\left(\sqrt{5}+2\right)\)

=-6

trần vũ hoàng phúc
Xem chi tiết
Toru
2 tháng 12 2023 lúc 21:23

Ta có: \(a^2\left(a+1\right)-b^2\left(b-1\right)-11ab+2024\) (1)

Lại có: \(a-b=\sqrt{29+12\sqrt{5}}-2\sqrt{5}\) 

\(=\sqrt{\left(2\sqrt{5}\right)^2+2\cdot2\sqrt{5}\cdot3+3^2}-2\sqrt{5}\)

\(=\sqrt{\left(2\sqrt{5}+3\right)^2}-2\sqrt{5}\)

\(=2\sqrt{5}+3-2\sqrt{5}\)

\(=3\)

\(\Rightarrow a=b+3\)

Thay \(a=b+3\) vào (1), ta được:

\(\left(b+3\right)^2\left(b+3+1\right)-b^2\left(b-1\right)-11\left(b+3\right)b+2024\)

\(=\left(b^2+6b+9\right)\left(b+4\right)-b^3+b^2-11b^2-33b+2024\)

\(=b\left(b^2+6b+9\right)+4\left(b^2+6b+9\right)-b^3-10b^2-33b+2024\)

\(=b^3+6b^2+9b+4b^2+24b+36-b^3-10b^2-33b+2024\)

\(=\left(b^3-b^3\right)+\left(6b^2+4b^2-10b^2\right)+\left(9b+24b-33b\right)+\left(2024+36\right)\)

\(=2060\)

$\Rightarrow$ Chọn đáp án $C$.

Nguyễn thành Đạt
2 tháng 12 2023 lúc 21:28

Ta có : \(a-b=\sqrt{29+12\sqrt{5}}-2\sqrt{5}\)

\(\Rightarrow a-b=\sqrt{20+12\sqrt{5}+9}-2\sqrt{5}\)

\(\Rightarrow a-b=\sqrt{\left(2\sqrt{5}+3\right)^2}-2\sqrt{5}\)

\(\Rightarrow a-b=2\sqrt{5}+3-2\sqrt{5}\)

\(\Rightarrow a-b=3\)

Xét biểu thức : \(a^2\left(a+1\right)-b^2\left(b-1\right)-11ab+2024\)

\(=a^3+a^2-b^3+b^2-11ab+2024\)

\(=a^3-b^3+a^2+b^2-2ab-9ab+2024\)

\(=a^3-b^3-9ab+a^2-2ab+b^2+2024\)

\(=a^3-3ab\left(a-b\right)-b^3+\left(a-b\right)^2+2024\) vì \(a-b=3\)

\(=\left(a-b\right)^3+\left(a-b\right)^2+2024\)

\(=3^3+3^2+2024\)

\(=2060\)

\(\Rightarrow C\)

Nguyễn Thị Anh Thư
Xem chi tiết
trương khoa
27 tháng 7 2021 lúc 15:14

\(\sqrt{\left(2-\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}\)

\(=\left|2-\sqrt{5}\right|+\left|2\sqrt{2}-\sqrt{5}\right|\)

\(=\sqrt{5}-2+2\sqrt{2}-\sqrt{5}=2\sqrt{2}-2=2\left(\sqrt{2}-1\right)\)

 

Nguyễn Lê Phước Thịnh
27 tháng 7 2021 lúc 15:15

Ta có: \(\sqrt{\left(2-\sqrt{5}\right)^2}+\sqrt{\left(2\sqrt{2}-\sqrt{5}\right)^2}\)

\(=\sqrt{5}-2+2\sqrt{2}-\sqrt{5}\)

\(=2\sqrt{2}-2\)

minh
Xem chi tiết
HT.Phong (9A5)
1 tháng 9 2023 lúc 16:56

a) \(\sqrt{3+2\sqrt{2}}+\sqrt{\left(\sqrt{2}-2\right)^2}\)

\(=\sqrt{\left(\sqrt{2}\right)^2+2\sqrt{2}\cdot1+1^2}+\left|\sqrt{2}-2\right|\)

\(=\sqrt{\left(\sqrt{2}+1\right)^2}-\left(\sqrt{2}-2\right)\)

\(=\left|\sqrt{2}+1\right|-\sqrt{2}+2\)

\(=\sqrt{2}+1-\sqrt{2}+2\)

\(=3\)

b) \(\dfrac{1}{5}\sqrt{50}-2\sqrt{96}-\dfrac{\sqrt{30}}{\sqrt{15}}+12\sqrt{\dfrac{1}{6}}\)

\(=\dfrac{1}{5}\cdot5\sqrt{2}-2\cdot4\sqrt{6}-\sqrt{\dfrac{30}{15}}+\sqrt{\dfrac{144}{6}}\)

\(=\sqrt{2}-8\sqrt{6}-\sqrt{2}+2\sqrt{6}\)

\(=-8\sqrt{6}+2\sqrt{6}\)

\(=-6\sqrt{6}\)

c) \(\left(\dfrac{5-\sqrt{5}}{\sqrt{5}}-2\right)\left(\dfrac{4}{1+\sqrt{5}}+4\right)\)

\(=\left[\dfrac{\sqrt{5}\left(\sqrt{5}-1\right)}{\sqrt{5}}-2\right]\left[\dfrac{4\left(1-\sqrt{5}\right)}{\left(1+\sqrt{5}\right)\left(1-\sqrt{5}\right)}+4\right]\)

\(=\left(\sqrt{5}-1-2\right)\left(\dfrac{4\left(1-\sqrt{5}\right)}{1-5}+4\right)\)

\(=\left(\sqrt{5}-3\right)\left(\sqrt{5}-1+4\right)\)

\(=\left(\sqrt{5}-3\right)\left(\sqrt{5}+3\right)\)

\(=\left(\sqrt{5}\right)^2-3^2\)

\(=-4\)

Nguyễn Đức Trí
1 tháng 9 2023 lúc 17:09

a) \(\sqrt[]{3+2\sqrt[]{2}}+\sqrt[]{\left(\sqrt[]{2}-2\right)^2}\)

\(=\sqrt[]{2+2\sqrt[]{2}.1+1}+\left|\sqrt[]{2}-2\right|\)

\(=\sqrt[]{\left(\sqrt[]{2}+1\right)^2}+\left(2-\sqrt[]{2}\right)\) \(\left(\left(\sqrt[]{2}\right)^2=2< 2^2=4\right)\)

\(=\left|\sqrt[]{2}+1\right|+2-\sqrt[]{2}\)

\(=\sqrt[]{2}+1+2-\sqrt[]{2}\)

\(=3\)

Nguyễn Thị Thuỳ
Xem chi tiết
Minh Nhân
5 tháng 6 2021 lúc 20:39

\(\sqrt{\left(\sqrt{7}-5\right)^2}+\sqrt{\left(2-\sqrt{7}\right)^2}=\sqrt{7}-5+2-\sqrt{7}=-3\)

missing you =
5 tháng 6 2021 lúc 20:40

đề bài thế này chứ: \(\sqrt{\left(\sqrt{7}-5\right)^2}+\sqrt{\left(2-\sqrt{7}\right)^2}\)

=\(5-\sqrt{7}+\sqrt{7}-2=3\)

GIA như♡♡♡♡☆
5 tháng 6 2021 lúc 20:41

\(\sqrt{\left(\sqrt{7-5}\right)^2}\)\(+\)\(\sqrt{\left(2-\sqrt{7}\right)^2}\)\(=\sqrt{7-5+2-\sqrt{7}=-7}\)

lce-cream
Xem chi tiết
Mạch Trần Quang Nhật
Xem chi tiết
Ran Mori
24 tháng 7 2017 lúc 21:21

a) \(\sqrt{\left(-5\right)^2}+\sqrt{5^2}-\sqrt{\left(-3\right)^2}-\sqrt{3^2}\)

\(=5+5-3-3\)

\(=4\)

b) \(\left(\sqrt{4^2}+\sqrt{\left(-4\right)^2}\right).\sqrt{4^{-3}}-\sqrt{3^{-4}}\)

\(=\left(4+4\right).\frac{1}{8}-\frac{1}{9}\)

\(=8.\frac{1}{8}-\frac{1}{9}\)

\(=1-\frac{1}{9}\)

\(=\frac{8}{9}\)

Nguyễn Hoàng Phương Nhi
Xem chi tiết
cao van duc
25 tháng 7 2018 lúc 20:31

a,\(x\ge0,x\ne49\)

Huy Nguyen
Xem chi tiết
Nguyễn Lê Phước Thịnh
22 tháng 2 2021 lúc 20:06

Sửa đề: \(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}\)

a) Ta có: \(P=\left(\dfrac{1}{x-\sqrt{x}}+\dfrac{1}{\sqrt{x}-1}\right):\dfrac{\sqrt{x}}{x-2\sqrt{x}+1}\)

\(=\left(\dfrac{1}{\sqrt{x}\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right):\dfrac{\sqrt{x}}{\left(\sqrt{x}-1\right)^2}\)

\(=\dfrac{\sqrt{x}+1}{\sqrt{x}\left(\sqrt{x}-1\right)}\cdot\dfrac{\left(\sqrt{x}-1\right)^2}{\sqrt{x}}\)

\(=\dfrac{x-1}{x}\)

b) Sửa đề: \(2\sqrt{x+1}=5\)

Ta có: \(2\sqrt{x+1}=5\)

\(\Leftrightarrow\sqrt{x+1}=\dfrac{5}{2}\)

\(\Leftrightarrow x+1=\dfrac{25}{4}\)

hay \(x=\dfrac{21}{4}\)(thỏa ĐK)

Thay \(x=\dfrac{21}{4}\) vào biểu thức \(P=\dfrac{x-1}{x}\), ta được:

\(P=\left(\dfrac{21}{4}-1\right):\dfrac{21}{4}=\dfrac{17}{4}\cdot\dfrac{4}{21}=\dfrac{17}{21}\)

Vậy: Khi \(2\sqrt{x+1}=5\) thì \(P=\dfrac{17}{21}\)

c) Để \(P>\dfrac{1}{2}\) thì \(P-\dfrac{1}{2}>0\)

\(\Leftrightarrow\dfrac{x-1}{x}-\dfrac{1}{2}>0\)

\(\Leftrightarrow\dfrac{2\left(x-1\right)}{2x}-\dfrac{x-1}{2x}>0\)

mà \(2x>0\forall x\) thỏa mãn ĐKXĐ

nen \(2\left(x-1\right)-x+1>0\)

\(\Leftrightarrow2x-2-x+1>0\)

\(\Leftrightarrow x-1>0\)

hay x>1

Kết hợp ĐKXĐ, ta được: x>1

Vậy: Để \(P>\dfrac{1}{2}\) thì x>1