Cho Hình 3.49. Chứng minh rằng:
a) d // BC;
b) d \( \bot \) AH;
c) Trong các kết luận trên, kết luận nào được suy ra từ tính chất của hai đường thẳng song song, kết luận nào được suy ra từ dấu hiệu nhận biết hai đường thẳng song song?
Cho tứ giác ABCD thỏa mãn AB = CD, AD = BC. Chứng minh rằng:
a, △ABC = △CDA
b, AB // CD và AD // BC
~Có vẽ hình~
b: Xét tứ giác ABCD có
AB=CD
AD=BC
Do đó: ABCD là hình bình hành
Suy ra: AB//CD;AD//BC
Cho hình thang ABCD có AB // CD và AB = AD = BC. Chứng minh rằng:
a, DB là tia phân giác của ADC
b, ABCD là hình thang cân
a: Xét ΔABD có AB=AD
nên ΔABD cân tại A
Suy ra: \(\widehat{ABD}=\widehat{ADB}\)
mà \(\widehat{ABD}=\widehat{BDC}\)
nên \(\widehat{ADB}=\widehat{CDB}\)
hay DB là tia phân giác của \(\widehat{ADC}\)
Cho tam giác ABC, điểm D nằm giữa B và C. Chứng minh rằng:
a)AD>AB+AC-BC/2
b)AD<AB+AC-BC/2
cho tam giác ABC có C < B. Gọi H là hình chiều của A trên đường thẳng BC. Trên tia BH lấy điểm D sao cho HB = HD. Gọi E là hình chiếu của D trên đường thẳng AC và K là hình chiếu của C trên đường thẳng AD. Chứng minh rằng:
a)D nằm trên HC
b)DE=DK
a: Trên tia BH có HB=HD
nên HB và HD là hai tia đối nhau
mà HB và HC là hai tia đối nhau
nên HD và HC là hai tia trùng nhau
=>\(D\in HC\)
b: Đề sai rồi bạn
Cho tam giác ABC vuông tại A có AH là đường cao (H thuộc BC). Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Chứng minh rằng:
a) AEHD là hình chữ nhật
b) △ABH ~ △AHD
c) HE2 = AE.EC
d) Gọi M là giao điểm của BE và CD. Chứng minh rằng △DBM ~ △ECM
a: góc AEH=góc ADH=góc DAE=90 độ
=>ADHE là hình chữ nhật
b: Xét ΔABH vuông tại H và ΔAHD vuông tại D có
góc BAH chung
=>ΔABH đồng dạngvói ΔAHD
c: ΔHAC vuông tại H có HE là đường cao
nên HE^2=AE*EC
Cho tam giác \(ABC\) vuông tại \(A\) (\(AB < AC\). Gọi \(D\) là trung điểm của \(BC\). Vẽ \(DE\) // \(AB\), vẽ \(DF\) // \(AC\) \((E \in AC\); \(F \in AB)\). Chứng minh rằng:
a) Tứ giác \(AEDF\) là hình chữ nhật
b) Tứ giác \(BFED\) là hình bình hành
a) Ta có:
\(\Delta ABC\) vuông tại \(A\) nên \(\widehat {{\rm{BAC}}} = 90^\circ \) và \(AB \bot AC\)
Mà \(DE\) // \(AB\) ; \(DF\) // \(AC\)
Suy ra \(DE \bot AC;\;DF \bot AB\)
Suy ra \(\widehat {DEA} = \widehat {DFA} = 90^\circ \)
Tứ giác \(AEDF\) có \(\widehat {BAC} = \widehat {DEA} = \widehat {DFA} = 90^\circ \) nên là hình chữ nhật
b) Vì \(AEDF\) là hình chữ nhật (cmt)
Suy ra \(AE = DF\); \(AF = DE\); \(AF\) // \(DE\); \(AE\) // \(DF\)
Vì \(DE \bot AC;\;DF \bot AB\) (cmt)
Suy ra \(\widehat {DEC} = \widehat {BFD} = 90^\circ \)
Xét \(\Delta BFD\) và \(\Delta DEC\) ta có:
\(\widehat {{\rm{BFD}}} = \widehat {{\rm{DEC}}} = 90^\circ \) (cmt)
\(BD = DC\) (gt)
\(\widehat {{\rm{FBD}}} = \widehat {{\rm{EDC}}}\) (do \(DE\) // \(BF\) )
Suy ra \(\Delta BFD = \Delta DEC\) (ch – gn)
Suy ra \(BF = DE\); \(DF = EC\) (hai cạnh tương tứng)
Xét tứ giác \(BFED\) ta có:
\(BF\) // \(DE\) (do \(AB\) // \(DE\))
\(BF = DE\) (cmt)
Suy ra \(BFED\) là hình bình hành
Cho bốn điểm \(A, B, C, D\). Chứng minh rằng:
a) \(\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} + \overrightarrow {DA} = \overrightarrow 0 \)
b) \(\overrightarrow {AC} - \overrightarrow {AD} = \overrightarrow {BC} - \overrightarrow {BD} \)
a)
\(\begin{array}{l}\overrightarrow {AB} + \overrightarrow {BC} + \overrightarrow {CD} + \overrightarrow {DA} = \left( {\overrightarrow {AB} + \overrightarrow {BC} } \right) + \left( {\overrightarrow {CD} + \overrightarrow {DA} } \right)\\ = \overrightarrow {AC} + \overrightarrow {CA} = \overrightarrow {AA} = \overrightarrow 0 .\end{array}\)
b)
\(\overrightarrow {AC} - \overrightarrow {AD} = \overrightarrow {DC} \) và \(\overrightarrow {BC} - \overrightarrow {BD} = \overrightarrow {DC} \)
\( \Rightarrow \overrightarrow {AC} - \overrightarrow {AD} = \overrightarrow {BC} - \overrightarrow {BD} \)
Cho hình chóp O.ABC có \(\widehat {AOB} = \widehat {BOC} = \widehat {COA} = 90^\circ \). Chứng minh rằng:
a) \(BC \bot OA\)
b) \(CA \bot OB\)
c) \(AB \bot OC\)
a) Ta có: \(\left. \begin{array}{l}OA \bot OB\\OA \bot OC\end{array} \right\} \Rightarrow OA \bot \left( {OBC} \right)\)
Mà \(BC \in \left( {OBC} \right) \Rightarrow OA \bot BC\)
b) Ta có \(\left. \begin{array}{l}OA \bot OB\\OB \bot OC\end{array} \right\} \Rightarrow OB \bot \left( {OAC} \right)\)
Mà \(CA \in \left( {OAC} \right) \Rightarrow CA \bot OB\)
c) Ta có \(\left. \begin{array}{l}OC \bot OB\\OA \bot OC\end{array} \right\} \Rightarrow OC \bot \left( {OAB} \right)\)
Mà \(AB \in \left( {OAB} \right) \Rightarrow AB \bot OC\)
Cho tam giác ABC vuông tại A. Gọi D,E,F lần lượt là trung điểm của các cạnh BC, AB, AC. Chứng minh rằng:
a. DE//AC, DF//AB.
b. Tứ giác AEDF là hình chữ nhật.
c. Gọi M và N lần lượt là các điểm đối xứng với D qua AB và AC. Chứng minh M đối xúng với N qua A.
Để chứng minh các phần a, b và c, ta sẽ sử dụng các tính chất của tam giác vuông và hình chữ nhật.
a. Ta có tam giác ABC vuông tại A, nên theo định lí trung tuyến, ta có DE là đường trung tuyến của tam giác ABC. Do đó, DE song song với cạnh AC. Tương tự, ta có DF song song với cạnh AB. Vậy DE//AC và DF//AB.
b. Ta cần chứng minh AEDF là hình chữ nhật. Đầu tiên, ta thấy DE//AC và DF//AB (theo phần a). Khi đó, ta có:
- AD = DC (vì D là trung điểm của BC)
- AE = EB (vì E là trung điểm của AB)
- AF = FC (vì F là trung điểm của AC)
Vậy ta có các cạnh đối diện của tứ giác AEDF bằng nhau, do đó AEDF là hình chữ nhật.
c. Gọi M là điểm đối xứng của D qua AB. Ta cần chứng minh M đối xứng với N qua A. Để làm điều này, ta sẽ chứng minh AM = AN và góc MAN = góc NAM.
- Vì M là điểm đối xứng của D qua AB, nên ta có AM = AD.
- Vì N là điểm đối xứng của D qua AC, nên ta có AN = AD.
Do đó, ta có AM = AN.
- Ta có góc MAD = góc DAB (vì M là điểm đối xứng của D qua AB)
- Ta có góc NAD = góc DAC (vì N là điểm đối xứng của D qua AC)
Vì tam giác ABC vuông tại A, nên góc DAB = góc DAC. Từ đó, ta có góc MAD = góc NAD.
Vậy ta có AM = AN và góc MAN = góc NAM, do đó M đối xứng với N qua A.
Vậy ta đã chứng minh được M đối xứng với N qua A.