a: góc AEH=góc ADH=góc DAE=90 độ
=>ADHE là hình chữ nhật
b: Xét ΔABH vuông tại H và ΔAHD vuông tại D có
góc BAH chung
=>ΔABH đồng dạngvói ΔAHD
c: ΔHAC vuông tại H có HE là đường cao
nên HE^2=AE*EC
a: góc AEH=góc ADH=góc DAE=90 độ
=>ADHE là hình chữ nhật
b: Xét ΔABH vuông tại H và ΔAHD vuông tại D có
góc BAH chung
=>ΔABH đồng dạngvói ΔAHD
c: ΔHAC vuông tại H có HE là đường cao
nên HE^2=AE*EC
cho tam giác abc vuông tại a có ah là đường cao (h thuộc bc) .gọi d và e lần lượt là hình chiếu của h trên ab và ac . cm rằng
a, aehd là hình chữ nhật
b, tam giác abh đồng dạng tam giác ahd
c, he^2=ae.ec
d, gọi m là giao điểm của be và cd. cm rằng tam giác dbm đồng dạng tam giác ecm
Cho tam giác ABC có đường cao AH (H ∈ BC).Gọi D và E lần lượt là hình của H trên AB và AC.Chứng minh rằng:
a) △ABH ∞ △AHD
b) HE2 = AE.EC
c) Gọi M là giao điểm của BE và CD.Chứng minh △DBM ∞ △ECM
cho tam giác abc vuông tại a có ah là đường cao (h thuộc bc) .gọi d và e lần lượt là hình chiếu của h trên ab và ac . cm rằng a, aehd là hình chữ nhật b, tam giác abh đồng dạng tam giác ahd c, he^2=ae.ec d, gọi m là giao điểm của be và cd. cm rằng tam giác dbm đồng dạng tam giác ecm
Cho△ ABC có AH là đường cao(HϵBC). Gọi D và E lần lượt là hình chiếu của H trên AB và AC. CMR:
a) △ABH ∼ △ AHD
b)HE2 = AE.EC
c) Gọi M là giao điểm của BE và CD. CMR △DBM ∼ △ECM
Cho tam giác ABC có AH là đường cao(H thuộc BC). Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Chứng minh rằng:
a, tam giác ABH đồng dạng với tam giác AHD
b,HE\(^2\)=AE.EC
c,Gọi M là giao điểm của BE và CD. Chứng minh rằng tam giác DBM đồng dạng với tam giác ECM
Cho tam giác ABC có AH là đường cao (H thuộc BC). Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Chứng minh rằng:
a, Tam giác ABH đồng dạng tam giác AHD
b, \(HE^2=AE.EC\)
c, Gọi M là giao điểm của BE và CD. CMR: tam giác DBM đồng dạng tam giác ECM.
cho Tam giac abc có AH la đường cao (H thuộc BC). Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Gọi M là giao điểm của BE và CD. CMR: tam giác DBM đồng dạng với tam giác ECM
Cho tam giác ABC có AH là đường cao( H thuộc BC0.Gọi D và E lần lượt là hình chiếu của H trên AB và AC.CMR:
a,TG ABH đồng dạng TG AHD
b, HE22 = AE.EC
c, Gọi M là giao điểm của BE và CD.CMR Tg DBM đồng dạng Tg ECM
Bài 1: Cho tam giác ABC vuông tại B , đường phân giác AD ( D thuộc BC ) . Kẻ CK vuông góc với đường thẳng AD tại K
a) Chứng minh : Tam giác BDA ~ Tam giác KDC
b) Chúng minh : Tam giác DBK ~ Tam giác DAC
c) Gọi I là giao điểm AB và CK . Chứng minh : AB . AI + DC . BC = AC2
Bài 2: Cho tam giác ABC có AH là đường cao ( H thuộc BC ) . Gọi D và E lần lượt là hình chiếu của H trên AB và AC . Chứng minh :
a) Tam giác ABH ~ Tam giác ADH
b) HE2 = AE . EC
c) Gọi M là giao điểm của BE và CD . Chứng minh tam giác DBM ~ Tam giác ECM
Bài 3: Cho tam giác ABC vuông tại A . Đường cao AH
a) Chứng minh : Tam giác ABC ~ Tam giác HBA
b) Tính độ dài BC và AH ,biết AB = 6 cm , AC = 8 cm
c) Phân giác góc ACB cắt AH tại E , cắt AB tại D . Tính tỉ số diện tích của hai tam giác ACD và HCE