Cho tam giác ABC, điểm D nằm giữa B và C. Chứng minh rằng:
\(\dfrac{AB+AC-BC}{2}\) < AD < \(\dfrac{AB+AC+BC}{2}\)
cho tam giác abc có ab lớn hơn ac tia phân giác của góc a cắt bc ở d. gọi y là 1 điểm nằm giữa a và d chứng minh rằng ab -ac lớn hơn yb yc
Cho tam giác ABC. Trên tia đối của AC lấy D sao cho AD= AC. Trên tia đối của tia AB lấy E sao cho AE= AB. Nối D với E
a) Chứng minh tam giác ABC= tam giác ADE
b) Gọi M là trung điểm của BC, N là trung điểm của DE. Chứng minh AM=AN
Cho tam giác ABC có AB < AC. Kẻ tia phân giác AD của góc A (D thuộc BC). Chứng minh DC-DB<AC-AB
Cho tam giác ABC, điểm D thuộc BC. Chứng minh rằng:
\(\dfrac{AB+AC-BC}{2}\) < AD < \(\dfrac{AB+AC+BC}{2}\)
Cho tam giác ABC, điểm O nằm trong tam giác, tia BO cắt cạnh AC tại I. a) So sánh OA và IA + IO, từ đó suy ra OA + OB < IA + IB; b) Chứng minh: OA + OB < CA + CB; c) Chứng minh: (AB+AC+BC) /2 < OA + OB + OC < AB + BC + CA
Cho △ABC có D,E,F lần lượt là trung điểm của BC,CA,AB. Trên tia đối của tia DA lấy điểm I sao cho D là trung điểm AI. Chứng minh:
a) AB= CI
b)AB+AC > 2.AD
c) AB+AC+BC> AD +BE +CF
Cho tam giác ABC, có góc B lớn hơn 90 độ. AB = 1⁄2 AC. Chứng minh rằng:
a) BC > AB
b) Góc A nhỏ hơn 2 lần góc C.
Cho tam giác ABC nhọn có AD và BE là hai đường cao cắt nhau tại H a, Chứng minh rằng: AD + BE < BC + AC b, Cho biết: AC < BC. Chứng minh rằng: HA < HB và AC + BE < BC + AD