Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đinh Cẩm Tú
Xem chi tiết
Mèo Dương
Xem chi tiết
Nguyễn Lê Phước Thịnh
4 tháng 3 2023 lúc 22:21

a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có

góc C chung

=>ΔABC đồng dạng với ΔHAC

b: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có

góc C chung

=>ΔCDE đồng dạng với ΔCAB

=>CD/CA=CE/CB

=>CD*CB=CA*CE

c: Xét ΔBEC và ΔADC có

CB/CA=CE/CD

góc C chung

=>ΔBEC đồg dạng vơi ΔADC

Ly Ly
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 10 2021 lúc 22:22

Bài 2: 

b: \(AH\cdot\left(\cot\widehat{B}+\cot\widehat{C}\right)\)

\(=AH\cdot\left(\dfrac{BH}{AH}+\dfrac{CH}{AH}\right)\)

\(=AH\cdot\dfrac{BC}{AH}=BC\)

Ly Thảo
Xem chi tiết
Nguyễn Lê Phước Thịnh
10 tháng 5 2022 lúc 19:22

a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có

góc B chung

Do đó: ΔABC\(\sim\)ΔHBA

b: ta có: ΔABC\(\sim\)ΔHBA

nên BA/BH=BC/BA

hay \(BA^2=BH\cdot BC\)

Nguyễn Ngọc Huy Toàn
10 tháng 5 2022 lúc 19:26

a.Xét tam giác ABC và tam giác HBA, có:

^B: chung

^BAC = ^BHA = 90 độ

Vậy tam giác ABC đồng dạng tam giác HBA (g.g)

b.\(\rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\)

\(\Leftrightarrow AB^2=BH.BC\left(đfcm\right)\) (1)

c.Áp dụng định lý pitago \(\Rightarrow BC=\sqrt{6^2+10^2}=2\sqrt{34}\left(cm\right)\)

(1) \(\Leftrightarrow6^2=2\sqrt{34}BH\)

\(\Leftrightarrow BH=\dfrac{9\sqrt{34}}{17}\left(cm\right)\)

Áp dụng định lý pitago trong tam giác ABH \(\Rightarrow AH=\sqrt{6^2-\left(\dfrac{9\sqrt{34}}{17}\right)^2}=\dfrac{15\sqrt{34}}{17}\left(cm\right)\)

Thư Thư
Xem chi tiết
Thư Thư
21 tháng 4 2021 lúc 21:37

giúp mình câu d thui mn ơi :333, mình cám ơn mn ạ

 

Nguyễn Lê Phước Thịnh
21 tháng 4 2021 lúc 21:40

a) Xét ΔABC vuông tại A và ΔHAC vuông tại H có 

\(\widehat{C}\) chung

Do đó: ΔABC\(\sim\)ΔHAC(g-g)

Nguyễn Lê Phước Thịnh
21 tháng 4 2021 lúc 21:41

b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow BC^2=6^2+8^2=100\)

hay BC=10(cm)

Vậy: BC=10cm

Yến Yến
Xem chi tiết
Minh Phương
2 tháng 5 2023 lúc 15:09

a. Diện tích của Δ ABC là:

 \(\dfrac{1}{2}\) . 6 . 8 = 24 cm2

b. Ta có: Δ ABC vuông tại A

Theo đ/lí Py - ta - go

BC= AB2 + AC2

BC2 = 62 + 82

BC2 = 100

\(\Rightarrow\) BC = \(\sqrt{100}\) = 10 cm

Vì AD là tia phân giác của \(\widehat{A}\) 

\(\dfrac{AB}{AC}=\dfrac{DB}{DC}\) 

 \(\Rightarrow\) \(\dfrac{6}{8}\) = \(\dfrac{DB}{10-DB}\) 

\(\Rightarrow\) \(\dfrac{3}{4}=\dfrac{DB}{10-DB}\) 

\(\Rightarrow\) 3 . (10 - DB) = 4DB

\(\Rightarrow\) 30 - 3DB - 4DB = 0

\(\Rightarrow\) 30 - 7DB = 0

\(\Rightarrow\)  DB = \(\dfrac{30}{7}\) \(\approx\) 4,3 cm

Ta có: DC = 10 - DB

 \(\Rightarrow\) DC = 10 - 4,3 

\(\Rightarrow\) DC = 5,7 cm

c. Xét ΔABC và ΔHBA:

     \(\widehat{A}=\widehat{H}\) = 900 (gt)

      \(\widehat{B}\) chung

\(\Rightarrow\) ΔABC \(\sim\) ΔHBA (g.g)

Ta có: ΔABC \(\sim\) ΔHBA 

\(\dfrac{AB}{HB}=\dfrac{BC}{BA}\) 

\(\Rightarrow\) AB2 = BH . BC

Vì ΔABC vuông tại A

SΔABC  = \(\dfrac{AH.BC}{2}\) \(\dfrac{AB.AC}{2}\) \(\Rightarrow\) AB . AC

\(\Leftrightarrow\) AH = \(\dfrac{AB.AC}{BC}\) = \(\Leftrightarrow\) \(\dfrac{1}{AH}\) = \(\dfrac{AH}{AB.AC}\) 

\(\Leftrightarrow\) \(\dfrac{1}{AB^2}\) = \(\dfrac{BC^2}{AB^2.AC^2}\) 

Mặt khác theo đ/lí Py - ta - go:

BC2 = AB2 + AC2

\(\Rightarrow\) \(\dfrac{1}{AH^2}\) = \(\dfrac{AB^2+AC^2}{AB^2.ÂC^2}\) = \(\dfrac{1}{AB^2}\) + \(\dfrac{1}{AC^2}\) 

\(\Rightarrow\) \(\dfrac{1}{AH^2}\) = \(\dfrac{1}{AB^2}\) + \(\dfrac{1}{AC^2}\) (dpcm)

nhớ tick cho cj nha

ILoveMath
Xem chi tiết
An Thy
18 tháng 7 2021 lúc 16:28

Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{4}AC\)

tam giác ABC vuông tại A nên áp dụng Py-ta-go

\(\Rightarrow BC^2=AB^2+AC^2=\dfrac{9}{16}AC^2+AC^2=\dfrac{25}{16}AC^2\)

\(\Rightarrow10000=\dfrac{25}{16}AC^2\Rightarrow AC^2=6400\Rightarrow AC=80\left(cm\right)\)

\(\Rightarrow AB=\dfrac{3}{4}.80=60\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{60.80}{100}=48\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{60^2}{100}=36\left(cm\right)\)

tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng

\(\Rightarrow AC^2=CH.BC\Rightarrow CH=\dfrac{AC^2}{BC}=\dfrac{80^2}{100}=64\left(cm\right)\)

Nguyễn Lê Phước Thịnh
18 tháng 7 2021 lúc 23:06

Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{4}\)

nên \(AB=\dfrac{3}{4}AC\)

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(AB^2+AC^2=BC^2\)

\(\Leftrightarrow\left(\dfrac{3}{4}AC\right)^2+AC^2=100^2\)

\(\Leftrightarrow\dfrac{25}{16}AC^2=10000\)

\(\Leftrightarrow AC^2=6400\)

hay AC=80(cm)

\(\Leftrightarrow AB=\dfrac{3}{4}\cdot AC=\dfrac{3}{4}\cdot80=60\left(cm\right)\)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot100=60\cdot80=4800\)

hay AH=48(cm)

Áp dụng định lí Pytago vào ΔABH vuông tại H,ta được:

\(AB^2=AH^2+BH^2\)

\(\Leftrightarrow BH^2=60^2-48^2=1296\)

hay BH=36(cm)

Ta có: BH+CH=BC(H nằm giữa B và C)

nên CH=BC-BH=100-36=64(cm)

Thu Hiền
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 9 2021 lúc 15:27

Xét ΔABC vuông tại A có

\(BC^2=AB^2+AC^2\)

hay AC=12(cm)

Xét ΔACB vuông tại A có AH là đường cao ứng với cạnh huyền BC

nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}CH=\dfrac{144}{13}\left(cm\right)\\AH=\dfrac{60}{13}\left(cm\right)\end{matrix}\right.\)

Nguyễn Hoàng Minh
3 tháng 9 2021 lúc 15:31

    Áp dụng định lí PTG vào tam giác ABC vuông tại A:

\(AC=\sqrt{BC^2-AB^2}=\sqrt{13^2-5^2}=12\left(cm\right)\)

     Áp dụng hệ thức lượng vào tam giác ABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta có:

\(AB^2=BH\cdot BC\\ \Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{5^2}{13}\approx1,9\left(cm\right)\\ \Rightarrow CH=BC-BH=11,1\left(cm\right)\)

\(AH^2=BH\cdot HC=11,1\cdot1,9=21,09\left(cm\right)\)

 

Hương Phạm
Xem chi tiết
Minh Hiếu
17 tháng 3 2022 lúc 21:37

a) Xét ΔHBA và ΔABC có:

^A=^H=90o

^HAB=^ACB(cùng phụ với ^ABC)

→ ΔHBA∼ΔABC(g.g)

b) Áp dụng định lí Pytago vào tam giác vuông ABC, ta có:

\(BC=\sqrt{20^2+15^2}=25cm\)

\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}AB.AC\)

\(\rightarrow AH.BC=AB.AC\)

\(\rightarrow AH=\dfrac{AB.AC}{BC}=12cm\)

c) Xét ΔAHB và ΔCHA có:

^AHB=^CHA=90o

^HCA=^HAB(cùng phụ với ^ABC)

→ ΔAHB∼ΔCHA(g.g)

\(\rightarrow\dfrac{AH}{HB}=\dfrac{HC}{AH}\left(tươngứng\right)\)

\(\rightarrow AH^2=HB.HC\)