Cho ΔABC vuông tại A, có đường cao AH.CMR BC+AH>AC+AB
giúp mik với
Cho ΔABC vuông tại A (AC > AB), đường cao AH. Trên tia HC lấy điểm D sao cho HD = AH. Qua D kẻ đường thẳng vuông góc với BC, cắt cạnh AC tại E.
C/m: a) ΔABC ∼ ΔHAC.
b) EC . AC = DC . BC.
c) ΔBEC ∼ ΔADC.
Cho Δ ABC vuông tại A (AC>AB), đường cao AH. Trên AC Lấy điểm D sao cho AH=HD. Qua D kẻ đường thẳng vuông góc BC cắt AC tại E
a) CM ΔABC∞ΔHAC
b) CM EC.AC=DC.BC
c) CM ΔBEC∞ΔADC và Δ ABE vuông cân
giúp mik vs mik đag cần lời giải gấp mik c.ơn
a: Xét ΔABC vuông tại A và ΔHAC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHAC
b: Xét ΔCDE vuông tại D và ΔCAB vuông tại A có
góc C chung
=>ΔCDE đồng dạng với ΔCAB
=>CD/CA=CE/CB
=>CD*CB=CA*CE
c: Xét ΔBEC và ΔADC có
CB/CA=CE/CD
góc C chung
=>ΔBEC đồg dạng vơi ΔADC
* Cho ΔABC vuông tại A, biết AC= 12cm, BC=15cm
a. Giải tam giác ABC
b. Tính độ dài đường cao AH, đường phân giác AD của ΔABC
* Cho ΔABC có 3 góc nhọn, kẻ đường cao AH.
a. CM: sinA+cos A>1
b. CM: BC=AH. (cotgB+cotgC)
c. Biết AH=6cm, góc B=\(60^0\), góc C=\(45^0\). Tính diện tích ΔABC
Bài 2:
b: \(AH\cdot\left(\cot\widehat{B}+\cot\widehat{C}\right)\)
\(=AH\cdot\left(\dfrac{BH}{AH}+\dfrac{CH}{AH}\right)\)
\(=AH\cdot\dfrac{BC}{AH}=BC\)
Cho tam giác ΔABC vuông tại A có AB=6cm,AC=10cm . Đường cao AH a)Chứng minh ΔABC / ΔABH b)Chứng minh AB²=BH.BC c)Tính BC,AH,BH
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
Do đó: ΔABC\(\sim\)ΔHBA
b: ta có: ΔABC\(\sim\)ΔHBA
nên BA/BH=BC/BA
hay \(BA^2=BH\cdot BC\)
a.Xét tam giác ABC và tam giác HBA, có:
^B: chung
^BAC = ^BHA = 90 độ
Vậy tam giác ABC đồng dạng tam giác HBA (g.g)
b.\(\rightarrow\dfrac{AB}{HB}=\dfrac{BC}{AB}\)
\(\Leftrightarrow AB^2=BH.BC\left(đfcm\right)\) (1)
c.Áp dụng định lý pitago \(\Rightarrow BC=\sqrt{6^2+10^2}=2\sqrt{34}\left(cm\right)\)
(1) \(\Leftrightarrow6^2=2\sqrt{34}BH\)
\(\Leftrightarrow BH=\dfrac{9\sqrt{34}}{17}\left(cm\right)\)
Áp dụng định lý pitago trong tam giác ABH \(\Rightarrow AH=\sqrt{6^2-\left(\dfrac{9\sqrt{34}}{17}\right)^2}=\dfrac{15\sqrt{34}}{17}\left(cm\right)\)
Cho ΔABC vuông tại A đường cao AH, có AB=6cm, AC=8cm. Kẻ HM vuông góc với AB (MϵAB), HN (NϵAC).
a) Cm: ΔABC đồng dạng ΔHAC
b) Tính: BC, AH, MN
c) Cm: AB.AM= AC.AN
d) Tính tỉ số dt ANM/ ABC = ? ; Diện tích ANM= ?
giúp mình câu d thui mn ơi :333, mình cám ơn mn ạ
a) Xét ΔABC vuông tại A và ΔHAC vuông tại H có
\(\widehat{C}\) chung
Do đó: ΔABC\(\sim\)ΔHAC(g-g)
b) Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(BC^2=AB^2+AC^2\)
\(\Leftrightarrow BC^2=6^2+8^2=100\)
hay BC=10(cm)
Vậy: BC=10cm
cho ΔABC vuông tại A, có AB = 6cm, AC = 8cm. Vẽ đường cao AH(H ϵ BC)
a) tính dt Δvuông ABC
b) vẽ p/g AD của góc A( D ϵ BC). tính DB,DC
c) C/m: α)ΔABC và ΔHBA đồng dạng
β)AB2 = BH.BC
γ)1/AH2 = 1/AB2 + 1/AC2
giúp mik vs mik đang cần gấp ạ
a. Diện tích của Δ ABC là:
\(\dfrac{1}{2}\) . 6 . 8 = 24 cm2
b. Ta có: Δ ABC vuông tại A
Theo đ/lí Py - ta - go
BC2 = AB2 + AC2
BC2 = 62 + 82
BC2 = 100
\(\Rightarrow\) BC = \(\sqrt{100}\) = 10 cm
Vì AD là tia phân giác của \(\widehat{A}\)
\(\dfrac{AB}{AC}=\dfrac{DB}{DC}\)
\(\Rightarrow\) \(\dfrac{6}{8}\) = \(\dfrac{DB}{10-DB}\)
\(\Rightarrow\) \(\dfrac{3}{4}=\dfrac{DB}{10-DB}\)
\(\Rightarrow\) 3 . (10 - DB) = 4DB
\(\Rightarrow\) 30 - 3DB - 4DB = 0
\(\Rightarrow\) 30 - 7DB = 0
\(\Rightarrow\) DB = \(\dfrac{30}{7}\) \(\approx\) 4,3 cm
Ta có: DC = 10 - DB
\(\Rightarrow\) DC = 10 - 4,3
\(\Rightarrow\) DC = 5,7 cm
c. Xét ΔABC và ΔHBA:
\(\widehat{A}=\widehat{H}\) = 900 (gt)
\(\widehat{B}\) chung
\(\Rightarrow\) ΔABC \(\sim\) ΔHBA (g.g)
Ta có: ΔABC \(\sim\) ΔHBA
\(\dfrac{AB}{HB}=\dfrac{BC}{BA}\)
\(\Rightarrow\) AB2 = BH . BC
Vì ΔABC vuông tại A
SΔABC = \(\dfrac{AH.BC}{2}\) = \(\dfrac{AB.AC}{2}\) \(\Rightarrow\) AB . AC
\(\Leftrightarrow\) AH = \(\dfrac{AB.AC}{BC}\) = \(\Leftrightarrow\) \(\dfrac{1}{AH}\) = \(\dfrac{AH}{AB.AC}\)
\(\Leftrightarrow\) \(\dfrac{1}{AB^2}\) = \(\dfrac{BC^2}{AB^2.AC^2}\)
Mặt khác theo đ/lí Py - ta - go:
BC2 = AB2 + AC2
\(\Rightarrow\) \(\dfrac{1}{AH^2}\) = \(\dfrac{AB^2+AC^2}{AB^2.ÂC^2}\) = \(\dfrac{1}{AB^2}\) + \(\dfrac{1}{AC^2}\)
\(\Rightarrow\) \(\dfrac{1}{AH^2}\) = \(\dfrac{1}{AB^2}\) + \(\dfrac{1}{AC^2}\) (dpcm)
nhớ tick cho cj nha
cho ΔABC vuông tại A có AB/AC=3/4, BC=100cm. Kẻ đường cao AH. Tính HA, HB, HC
Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{4}\Rightarrow AB=\dfrac{3}{4}AC\)
tam giác ABC vuông tại A nên áp dụng Py-ta-go
\(\Rightarrow BC^2=AB^2+AC^2=\dfrac{9}{16}AC^2+AC^2=\dfrac{25}{16}AC^2\)
\(\Rightarrow10000=\dfrac{25}{16}AC^2\Rightarrow AC^2=6400\Rightarrow AC=80\left(cm\right)\)
\(\Rightarrow AB=\dfrac{3}{4}.80=60\left(cm\right)\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AH.BC=AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{60.80}{100}=48\left(cm\right)\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AB^2=BH.BC\Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{60^2}{100}=36\left(cm\right)\)
tam giác ABC vuông tại A có đường cao AH nên áp dụng hệ thức lượng
\(\Rightarrow AC^2=CH.BC\Rightarrow CH=\dfrac{AC^2}{BC}=\dfrac{80^2}{100}=64\left(cm\right)\)
Ta có: \(\dfrac{AB}{AC}=\dfrac{3}{4}\)
nên \(AB=\dfrac{3}{4}AC\)
Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow\left(\dfrac{3}{4}AC\right)^2+AC^2=100^2\)
\(\Leftrightarrow\dfrac{25}{16}AC^2=10000\)
\(\Leftrightarrow AC^2=6400\)
hay AC=80(cm)
\(\Leftrightarrow AB=\dfrac{3}{4}\cdot AC=\dfrac{3}{4}\cdot80=60\left(cm\right)\)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH\cdot BC=AB\cdot AC\)
\(\Leftrightarrow AH\cdot100=60\cdot80=4800\)
hay AH=48(cm)
Áp dụng định lí Pytago vào ΔABH vuông tại H,ta được:
\(AB^2=AH^2+BH^2\)
\(\Leftrightarrow BH^2=60^2-48^2=1296\)
hay BH=36(cm)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên CH=BC-BH=100-36=64(cm)
Cho ΔABC vuông tại A .Đường cao AH ; có AB = 5cm , BC=13cm. Tính AC , CH , AH
Giải hộ mk vs ạ
Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay AC=12(cm)
Xét ΔACB vuông tại A có AH là đường cao ứng với cạnh huyền BC
nên \(\left\{{}\begin{matrix}AC^2=CH\cdot BC\\AH\cdot BC=AB\cdot AC\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}CH=\dfrac{144}{13}\left(cm\right)\\AH=\dfrac{60}{13}\left(cm\right)\end{matrix}\right.\)
Áp dụng định lí PTG vào tam giác ABC vuông tại A:
\(AC=\sqrt{BC^2-AB^2}=\sqrt{13^2-5^2}=12\left(cm\right)\)
Áp dụng hệ thức lượng vào tam giác ABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta có:
\(AB^2=BH\cdot BC\\ \Rightarrow BH=\dfrac{AB^2}{BC}=\dfrac{5^2}{13}\approx1,9\left(cm\right)\\ \Rightarrow CH=BC-BH=11,1\left(cm\right)\)
\(AH^2=BH\cdot HC=11,1\cdot1,9=21,09\left(cm\right)\)
Cho ΔABC vuông tại A có đường cao AH, biết AB = 15cm , AC = 20cm.
a) Chứng minh: ΔHBA và ΔABC đồng dạng.
b) Tính độ dài BC và AH.
c) Chứng minh: AH^2 = HB.HC
Ai biết thì giúp mình với ạ. Xin cảm ơn ạ
a) Xét ΔHBA và ΔABC có:
^A=^H=90o
^HAB=^ACB(cùng phụ với ^ABC)
→ ΔHBA∼ΔABC(g.g)
b) Áp dụng định lí Pytago vào tam giác vuông ABC, ta có:
\(BC=\sqrt{20^2+15^2}=25cm\)
\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}AB.AC\)
\(\rightarrow AH.BC=AB.AC\)
\(\rightarrow AH=\dfrac{AB.AC}{BC}=12cm\)
c) Xét ΔAHB và ΔCHA có:
^AHB=^CHA=90o
^HCA=^HAB(cùng phụ với ^ABC)
→ ΔAHB∼ΔCHA(g.g)
\(\rightarrow\dfrac{AH}{HB}=\dfrac{HC}{AH}\left(tươngứng\right)\)
\(\rightarrow AH^2=HB.HC\)