Bài 2:
b: \(AH\cdot\left(\cot\widehat{B}+\cot\widehat{C}\right)\)
\(=AH\cdot\left(\dfrac{BH}{AH}+\dfrac{CH}{AH}\right)\)
\(=AH\cdot\dfrac{BC}{AH}=BC\)
Bài 2:
b: \(AH\cdot\left(\cot\widehat{B}+\cot\widehat{C}\right)\)
\(=AH\cdot\left(\dfrac{BH}{AH}+\dfrac{CH}{AH}\right)\)
\(=AH\cdot\dfrac{BC}{AH}=BC\)
* Cho ΔABC vuông tại A, biết AC= 12cm, BC=15cm
a. Giải tam giác ABC
b. Tính độ dài đường cao AH, đường phân giác AD của ΔABC
* Cho ΔABC có BC=12cm, góc B=\(60^0\), góc C=\(40^0\)
a. Tính đường cao CH và cạnh AC
b. Tính diện tích ΔABC (làm tròn đến chữ số thập phân thứ 2)
* Cho ΔABC vuông tại A có góc B= \(30^0\), AB=6cm
a. Giải tam giác vuông ABC
b. Vẽ đường cao AH, trung tuyến AM của ΔABC. Tính diện tích ΔAHM
* Cho ΔABC vuông tại A có B= \(30^0\), AB=6cm
a. Giải ΔABC
b. Vẽ đường cao AH và trung tuyến AM của ΔABC. Tính diện tích ΔAHM
* Cho ΔABC vuông tại A có AB=3 cm, BC=5cm, đường cao AH
a. Tính số đo góc B, C
b. Gọi AE là phân giác của góc A (E ∈ BC). Tính AE
Cho ΔABC vuông tại A, biết AC = 12cm, BC = 15cm.
a ) iải tam giác ABC.
b ) Tính độ dài đường cao AH, đường phân giác AD của ΔABC .
1. Cho ΔABC vuông tại A; AB=12 cm; AC= 16cm. Kẻ đường cao AH
a)CM: ΔABH đồn dạng với Δ CHA
b) Tính BH; AH; HB; HC
c) kẻ AD là tia phân giác của góc BAC; DE là phân giác của góc ADB; DF là phân giác của góc ADC. Chứng minh: góc EFD= 90° và tính đọ dài BD, DC
d) Chứng minh: EA/EB= ED/DC= FC/FA= 1
2. CHo ΔABC có AB=6cm; AC=15cm; AH⊥ BC
a) Tính BC, AH, BH, CH
b) Kẻ AD là đường phân giác của góc ABC; BD cắt AH tại I. Chứng minh: BI.AB= BD. HB
c) Chứng minh ΔAID cân
d) Chứng minh: AI.BI= BD.IH
Cho tam giác ABC vuông tại A, biết AC = 20cm ; BC = 30cm.
a/ Giải tam giác vuông ABC ( Số đo của góc làm tròn đến độ )
b/ Kẻ đường cao AH của ΔABC. Tính AH ; CH.
c/ Chứng minh : tan2C = \(\dfrac{BH}{CH}\)
Cho ΔABC có AB = 9cm , AC = 12cm , BC = 15cm.
a) Chứng minh ΔABC vuông tại A.
b)Tính các góc B ,C và đường AH của tam giác đó.
c)Gọi M là đường trung tuyến của tam giác ABC . Tính chu vi và diện tích của tam giác AHM
Cho ΔABC vuông tại B biết: BC=2a; góc A=45°: a) Tính độ dài cạnh AB; AC b) Kẻ BH vuông góc AC. Tính BH=? c) Tính diện tích ΔABC d) Tính chu vi ΔABC e) Tính bán kính đường tròn ngoại tiếp ΔABC
Bài 3. Cho ΔABC vuông tại A có BC = 8cm, 𝐵 ̂= 60o
a) Giải tam giác vuông ABC
b) Kẻ đường cao AH của ΔABC. Tính AH, HC.
c) Gọi M, N lần lượt là hình chiếu của H lên AB, AC. Chứng minh AMHN là hình
chữ nhật và MN3 = BC.BM.CN