Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
anbe
Xem chi tiết
Nguyễn Việt Lâm
2 tháng 8 2021 lúc 22:29

Gọi M là trung điểm BC \(\Rightarrow\overrightarrow{MB}+\overrightarrow{MC}=\overrightarrow{0}\)

Ta có:

\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{GM}+\overrightarrow{MA}+\overrightarrow{GM}+\overrightarrow{MB}+\overrightarrow{GM}+\overrightarrow{MC}=\overrightarrow{0}\)

\(\Leftrightarrow3\overrightarrow{GM}+\overrightarrow{MA}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{GM}=\dfrac{1}{3}\overrightarrow{AM}\)

\(\Leftrightarrow\overrightarrow{GA}+\overrightarrow{AM}=\dfrac{1}{3}\overrightarrow{AM}\)

\(\Leftrightarrow\overrightarrow{AG}=\dfrac{2}{3}\overrightarrow{AM}\)

\(\Rightarrow G\) là trọng tâm tam giác ABC

Minh Đào
Xem chi tiết
Nguyễn Việt Lâm
3 tháng 12 2021 lúc 9:13

\(T=\overrightarrow{GA}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)+\overrightarrow{GB}.\overrightarrow{CA}+\overrightarrow{GC}.\overrightarrow{AB}\)

\(=\overrightarrow{AB}\left(\overrightarrow{GC}-\overrightarrow{GA}\right)+\overrightarrow{AC}\left(\overrightarrow{GA}-\overrightarrow{GB}\right)\)

\(=\overrightarrow{AB}\left(\overrightarrow{GC}+\overrightarrow{AG}\right)+\overrightarrow{AC}\left(\overrightarrow{GA}+\overrightarrow{BG}\right)\)

\(=\overrightarrow{AB}.\overrightarrow{AC}+\overrightarrow{AC}.\overrightarrow{BA}\)

\(=0\)

Sách Giáo Khoa
Xem chi tiết
Doraemon
30 tháng 3 2017 lúc 19:32

Giải bài 7 trang 29 sgk Hình học 10 | Để học tốt Toán 10

\(\Rightarrow\)Vậy chọn đáp án C

yuo yuo
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 2 2020 lúc 22:54

\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\Rightarrow\left(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}\right)^2=0\)

\(\Rightarrow-2\left(\overrightarrow{GA}.\overrightarrow{GB}+\overrightarrow{GB}.\overrightarrow{GC}+\overrightarrow{GC}.\overrightarrow{GA}\right)=GA^2+GB^2+GC^2\)

\(\Rightarrow\overrightarrow{GA}.\overrightarrow{GB}+\overrightarrow{GB}.\overrightarrow{GC}+\overrightarrow{GC}.\overrightarrow{GA}=-\frac{1}{2}\left(\frac{2}{3}m_a^2+\frac{2}{3}m_b^2+\frac{2}{3}m_c^2\right)\)

\(=-\frac{1}{6}\left(AB^2+BC^2+CA^2\right)\)

Hình như đề bài sai dấu?

Khách vãng lai đã xóa
Tấn Phát
Xem chi tiết
Nguyễn Việt Lâm
10 tháng 12 2021 lúc 19:45

Do G là trọng tâm ABC \(\Rightarrow\overrightarrow{BG}=\dfrac{1}{3}\overrightarrow{BA}+\dfrac{1}{3}\overrightarrow{BC}\)

I đối xứng B qua G \(\Rightarrow\) \(\overrightarrow{BI}=2\overrightarrow{BG}=\dfrac{2}{3}\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{BC}=\dfrac{2}{3}\overrightarrow{BA}+\dfrac{2}{3}\left(\overrightarrow{BA}+\overrightarrow{AC}\right)\)

\(\Rightarrow\overrightarrow{BI}=\dfrac{4}{3}\overrightarrow{BA}+\dfrac{2}{3}\overrightarrow{AC}=-\dfrac{4}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\)

\(\Rightarrow\overrightarrow{CI}=\overrightarrow{CB}+\overrightarrow{BI}=\overrightarrow{CA}+\overrightarrow{AB}-\dfrac{4}{3}\overrightarrow{AB}+\dfrac{2}{3}\overrightarrow{AC}\)

\(\Rightarrow\overrightarrow{CI}=-\dfrac{1}{3}\overrightarrow{AB}-\dfrac{1}{3}\overrightarrow{AC}\)

Quoc Tran Anh Le
Xem chi tiết
Hà Quang Minh
25 tháng 9 2023 lúc 21:25

Ta có:

\(\overrightarrow {GA}  + \overrightarrow {GB}  + \overrightarrow {GC}  + \overrightarrow {GD}  = \overrightarrow 0  \Leftrightarrow \left( {\overrightarrow {GI}  + \overrightarrow {IA} } \right) + \left( {\overrightarrow {GI}  + \overrightarrow {IB} } \right) + \left( {\overrightarrow {GJ}  + \overrightarrow {JC} } \right) + \left( {\overrightarrow {GJ}  + \overrightarrow {JD} } \right) = \overrightarrow 0 \)

\( \Leftrightarrow 2\overrightarrow {GI}  + \left( {\overrightarrow {IA}  + \overrightarrow {IB} } \right) + 2\overrightarrow {GJ}  + \left( {\overrightarrow {JC}  + \overrightarrow {JD} } \right) = \overrightarrow 0 \)

\( \Leftrightarrow 2\overrightarrow {GI}  + 2\overrightarrow {GJ}  = \overrightarrow 0  \Leftrightarrow 2\left( {\overrightarrow {GI}  + \overrightarrow {GJ} } \right) = \overrightarrow 0 \)

\( \Leftrightarrow \overrightarrow {GI}  + \overrightarrow {GJ}  = \overrightarrow 0  \Rightarrow \)là trung điểm của đoạn thẳng IJ

Vậy I, G, J thẳng hàng

Trịnh Hương Giang
Xem chi tiết
Akai Haruma
19 tháng 10 2019 lúc 10:59

Đề thiếu. Bạn xem lại đề.

Khách vãng lai đã xóa
Sách Giáo Khoa
Xem chi tiết
Bùi Thị Vân
15 tháng 5 2017 lúc 11:24

Ta đã biết nếu G' là trọng tâm tam giác ABC thì:
\(\overrightarrow{G'A}+\overrightarrow{G'B}+\overrightarrow{G'C}=\overrightarrow{0}\).
Gỉa sử có điểm G thỏa mãn: \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\).
Ta sẽ chứng minh \(G\equiv G'\).
Thật vậy:
\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)
\(\Leftrightarrow3\overrightarrow{GG'}+\overrightarrow{G'A}+\overrightarrow{G'B}+\overrightarrow{G'C}=\overrightarrow{0}\)
\(\Leftrightarrow3\overrightarrow{GG'}=\overrightarrow{0}\)
\(\Leftrightarrow\overrightarrow{GG'}=\overrightarrow{0}\).
Vậy \(G\equiv G'\).

quangduy
Xem chi tiết
Nguyễn Việt Lâm
23 tháng 11 2018 lúc 21:49

Theo tính chất trọng tâm tam giác ta luôn có:

\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\Rightarrow\overrightarrow{GA}=-\overrightarrow{GB}-\overrightarrow{GC}\)

Thế vào đẳng thức giả thiết ta được:

\(BC.\left(-\overrightarrow{GB}-\overrightarrow{GC}\right)+AC.\overrightarrow{GB}+AB.\overrightarrow{GC}=\overrightarrow{0}\)

\(\Rightarrow\left(AC-BC\right)\overrightarrow{GB}=\left(BC-AB\right)\overrightarrow{GC}\) (1)

\(\overrightarrow{GB};\overrightarrow{GC}\) không phải 2 vecto cùng phương

\(\Rightarrow\left(1\right)\) xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}AC-BC=0\\BC-AB=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}AC=BC\\AB=BC\end{matrix}\right.\)

\(\Rightarrow AB=AC=BC\) \(\Rightarrow\Delta ABC\) là tam giác đều