Bài 2. TỔNG VÀ HIỆU CỦA HAI VECTO

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lê Thị Thanh Huyền
Xem chi tiết
Nguyễn Việt Lâm
22 tháng 12 2020 lúc 10:11

\(\overrightarrow{AD}+2\overrightarrow{AB}=\overrightarrow{AD}+\overrightarrow{AB}+\overrightarrow{AB}=\overrightarrow{AC}+\overrightarrow{AB}=2\overrightarrow{AI}\) (đpcm)

Luân Đinh Tiến
Xem chi tiết
Ngô Thành Chung
4 tháng 1 2021 lúc 21:14

Gt ⇒ \(2\left|\overrightarrow{MC}+\overrightarrow{MA}+\overrightarrow{MB}\right|=3\left|\overrightarrow{MB}+\overrightarrow{MC}\right|\)

Do G là trọng tâm của ΔABC

⇒ \(\overrightarrow{MA}+\overrightarrow{MB}+\overrightarrow{MC}=3\overrightarrow{MG}\)

⇒ VT = 6MG

I là trung điểm của BC

⇒ \(\overrightarrow{MA}+\overrightarrow{MB}=2\overrightarrow{MI}\)

⇒ VP = 6MI

Khi VT = VP thì MG = MI

Vậy tập hợp các điểm M thỏa mãn ycbt là đường trung trực của đoạn thẳng IG

 

Văn Quyết
Xem chi tiết
Nguyễn Lê Phước Thịnh
2 tháng 9 2022 lúc 9:52

a: \(\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AI}+\overrightarrow{IB}+\overrightarrow{DI}+\overrightarrow{IC}\)

\(=\overrightarrow{AI}+\overrightarrow{DI}=-\left(\overrightarrow{IA}+\overrightarrow{ID}\right)=-2\overrightarrow{IM}=2\overrightarrow{MI}\)

\(\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AC}+\overrightarrow{DB}\)

\(\Leftrightarrow\overrightarrow{AB}-\overrightarrow{AC}=\overrightarrow{DB}-\overrightarrow{DC}\)

\(\Leftrightarrow\overrightarrow{CA}+\overrightarrow{AB}=\overrightarrow{CD}+\overrightarrow{DB}=\overrightarrow{CB}\)(luôn đúng)

=>ĐPCM

b: \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GD}\)

\(=2\cdot\overrightarrow{GM}+2\cdot\overrightarrow{GI}=\overrightarrow{0}\)

Zy
Xem chi tiết
Ṇĝuŷėṇ Ħỏǡŋġ
Xem chi tiết
Nhi Vũ
20 tháng 9 2018 lúc 18:45

OA= OB

Ṇĝuŷėṇ Ħỏǡŋġ
Xem chi tiết
Ngân Vũ Thị
29 tháng 7 2019 lúc 7:59

undefined

Ngân Vũ Thị
29 tháng 7 2019 lúc 7:59

undefined

Ngân Vũ Thị
29 tháng 7 2019 lúc 8:02

undefined

Nguyễn Hải Yến
Xem chi tiết
Nguyễn Lê Phước Thịnh
3 tháng 9 2022 lúc 19:46

Câu 1: 

Gọi M là trung điểm của AC

AM=AC/2=2

\(BM=\sqrt{3^2+2^2}=\sqrt{13}\)

\(\left|\overrightarrow{AB}+\overrightarrow{CB}\right|=\left|\overrightarrow{BA}+\overrightarrow{BC}\right|=2\cdot BM=2\sqrt{13}\)

Câu 6:

\(\overrightarrow{AB}+\overrightarrow{BC}+\overrightarrow{CD}+\overrightarrow{DE}+\overrightarrow{EF}+\overrightarrow{FA}\)

\(=\overrightarrow{AC}+\overrightarrow{CE}+\overrightarrow{EA}=\overrightarrow{AE}+\overrightarrow{EA}=\overrightarrow{0}\)

Min Yoongi
Xem chi tiết
Min Yoongi
Xem chi tiết
Hiển Lê Quang
26 tháng 9 2018 lúc 21:40

Đề thiếu chỗ vecto BD nha bạn

Ta có: \(\overrightarrow{AC}=\overrightarrow{AD}+\overrightarrow{DC}\)

\(\overrightarrow{BD}=\overrightarrow{BC}+\overrightarrow{CD}\)

\(\overrightarrow{AC}+\overrightarrow{BD}=\overrightarrow{AD}+\overrightarrow{DC}+\overrightarrow{BC}+\overrightarrow{CD}\)

\(\overrightarrow{DC}+\overrightarrow{CD}=\overrightarrow{0}\)

\(\overrightarrow{AC}+\overrightarrow{BD}=\overrightarrow{AD}+\overrightarrow{BC}\)

Min Yoongi
Xem chi tiết
Hồng Quang
4 tháng 8 2019 lúc 12:15

Xíu nữa làm :v

Hồng Quang
4 tháng 8 2019 lúc 19:01

1) Ta có:\(\overrightarrow{AB}+\overrightarrow{DE}-\overrightarrow{DB}+\overrightarrow{BC}=\overrightarrow{AE}+\overrightarrow{BC}=\overrightarrow{AC}+\overrightarrow{CE}+\overrightarrow{BE}+\overrightarrow{EC}\)

\(=\overrightarrow{AC}+\overrightarrow{BE}+\overrightarrow{CE}+\overrightarrow{EC}=\overrightarrow{AC}+\overrightarrow{BE}\left(đpcm\right)\)2) a) Ta có: \(\overrightarrow{AD}+\overrightarrow{BE}+\overrightarrow{CF}=\overrightarrow{AE}+\overrightarrow{ED}+\overrightarrow{BF}+\overrightarrow{FE}+\overrightarrow{CD}+\overrightarrow{DF}\)\(=\overrightarrow{AE}+\overrightarrow{BF}+\overrightarrow{CD}+\overrightarrow{ED}+\overrightarrow{DF}+\overrightarrow{FE}\)

\(=\overrightarrow{AE}+\overrightarrow{BF}+\overrightarrow{CD}\left(đpcm\right)\)

b) Ta có: \(\overrightarrow{AB}+\overrightarrow{CD}=\overrightarrow{AD}+\overrightarrow{DB}+\overrightarrow{CB}+\overrightarrow{BD}\)

\(=\overrightarrow{AD}+\overrightarrow{CB}+\overrightarrow{DB}+\overrightarrow{BD}=\overrightarrow{AD}+\overrightarrow{CB}\left(đpcm\right)\)c) \(\overrightarrow{AB}-\overrightarrow{CD}=\overrightarrow{AB}-\overrightarrow{BD}\)

\(\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AB}+\overrightarrow{DB}\)

Ta có: \(\overrightarrow{AB}+\overrightarrow{DC}=\overrightarrow{AB}+\overrightarrow{DB}+\overrightarrow{BC}\) ( đề bài bị lỗi gì à ?? :v ) hay do mình =))

Hồng Quang
4 tháng 8 2019 lúc 19:04

Bài 2. TỔNG VÀ HIỆU CỦA HAI VECTO