Chương I: VÉC TƠ

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
quangduy

Cho tam giác ABC với trọng tâm G. Chứng minh rằng nếu\(\left|\overrightarrow{BC}\right|\overrightarrow{GA}+\left|\overrightarrow{CA}\right|\overrightarrow{GB}+\left|\overrightarrow{AB}\right|\overrightarrow{GC}=\overrightarrow{0}\) thì tam giác ABC là tam giác đều

Nguyễn Việt Lâm
23 tháng 11 2018 lúc 21:49

Theo tính chất trọng tâm tam giác ta luôn có:

\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\Rightarrow\overrightarrow{GA}=-\overrightarrow{GB}-\overrightarrow{GC}\)

Thế vào đẳng thức giả thiết ta được:

\(BC.\left(-\overrightarrow{GB}-\overrightarrow{GC}\right)+AC.\overrightarrow{GB}+AB.\overrightarrow{GC}=\overrightarrow{0}\)

\(\Rightarrow\left(AC-BC\right)\overrightarrow{GB}=\left(BC-AB\right)\overrightarrow{GC}\) (1)

\(\overrightarrow{GB};\overrightarrow{GC}\) không phải 2 vecto cùng phương

\(\Rightarrow\left(1\right)\) xảy ra khi và chỉ khi \(\left\{{}\begin{matrix}AC-BC=0\\BC-AB=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}AC=BC\\AB=BC\end{matrix}\right.\)

\(\Rightarrow AB=AC=BC\) \(\Rightarrow\Delta ABC\) là tam giác đều


Các câu hỏi tương tự
Trịnh Hương Giang
Xem chi tiết
yuo yuo
Xem chi tiết
TFBoys
Xem chi tiết
Tuyết Phạm
Xem chi tiết
Không Biết Gì
Xem chi tiết
Tường Nguyễn Thế
Xem chi tiết
Sakura Nguyen
Xem chi tiết
2003
Xem chi tiết
Julian Edward
Xem chi tiết