Bài 3a. Tính nguyên hàm - tích phân bằng phương pháp đổi biến số

T. Hữu Lộc

Cho hàm số FX có đạo hàm liên tục trên đoạn [0;1] bằng mãn f (1) = 1 và (f'(x))²+4(6x²-1).f(x)=40x⁶-44x⁴+32x²-4,Tích phân cân từ 0 đến 1 của xf(x)dx bằng

A.-13/15

B.5/12

C.13/15

B.-5/12

Nguyễn Việt Lâm
22 tháng 5 2020 lúc 14:52

Lấy tích phân 2 vế:

\(\int\limits^1_0\left[f'\left(x\right)\right]^2dx+\int\limits^1_04\left(6x^2-1\right)f\left(x\right)dx=\int\limits^1_0\left(40x^6-44x^4+32x^2-4\right)dx=\frac{376}{105}\)

Xét \(I=\int\limits^1_0\left(6x^2-1\right)f\left(x\right)dx\)

Đặt \(\left\{{}\begin{matrix}u=f\left(x\right)\\dv=\left(6x^2-1\right)dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=f'\left(x\right)dx\\v=2x^3-x\end{matrix}\right.\)

\(\Rightarrow I=\left(2x^3-x\right)f\left(x\right)|^1_0-\int\limits^1_0\left(2x^3-x\right)f'\left(x\right)dx=1-\int\limits^1_0\left(2x^3-x\right)f'\left(x\right)dx\)

\(\Rightarrow\int\limits^1_0\left[f'\left(x\right)\right]^2dx+4-4\int\limits^1_0\left(2x^3-x\right)f'\left(x\right)dx=\frac{376}{105}\)

\(\Leftrightarrow\int\limits^1_0\left[f'\left(x\right)-2\left(2x^3-x\right)\right]^2dx-\int\limits^1_04\left(2x^3-x\right)^2dx=-\frac{44}{105}\)

\(\Leftrightarrow\int\limits^1_0\left[f'\left(x\right)-2\left(2x^3-x\right)\right]^2dx-\frac{44}{105}=-\frac{44}{105}\)

\(\Leftrightarrow\int\limits^1_0\left[f'\left(x\right)-\left(4x^3-2x\right)\right]^2dx=0\)

\(\Rightarrow f'\left(x\right)=4x^3-2x\Rightarrow f\left(x\right)=x^4-x^2+C\)

\(f\left(1\right)=1\Rightarrow1-1+C=1\Rightarrow C=1\)

\(\Rightarrow f\left(x\right)=x^4-x^2+1\)

\(\Rightarrow\int\limits^1_0x\left(x^4-x^2+1\right)dx=\frac{5}{12}\)

Bình luận (0)

Các câu hỏi tương tự
Tâm Cao
Xem chi tiết
An Sơ Hạ
Xem chi tiết
B.Trâm
Xem chi tiết
Nguyễn Thanh
Xem chi tiết
Kiên Đỗ
Xem chi tiết
Kiên Đỗ
Xem chi tiết
Lê Thanh Phương
Xem chi tiết
Đặng Minh Quân
Xem chi tiết
An Sơ Hạ
Xem chi tiết