Thiên An
30 tháng 6 2017 lúc 22:33

Phải là giá trị nhỏ nhất nha bạn

Áp dụng BĐT Cô-si dạng Engel

\(A=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{z+y}\ge\frac{\left(x+y+z\right)^2}{\left(y+z\right)+\left(z+x\right)+\left(x+y\right)}=\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{x+y+z}{2}=\frac{2}{2}=1\)

Đẳng thức xảy ra  \(\Leftrightarrow\)  \(\hept{\begin{cases}\frac{x}{y+z}=\frac{y}{z+x}=\frac{z}{x+y}\\x+y+z=2\end{cases}}\)  \(\Leftrightarrow\)  \(x=y=z=\frac{2}{3}\)

Bình luận (0)
fairy
30 tháng 6 2017 lúc 22:36

áp dụng bất đẳng thức cô si ta có:

\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge x\)

\(\frac{y^2}{z+x}+\frac{z+x}{4}\ge y\)

\(\frac{z^2}{x+y}+\frac{x+y}{4}\ge z\)

\(\Rightarrow\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}+\frac{x+y+z}{2}\ge x+y+z\)

\(\Rightarrow\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{x+y}\ge\frac{x+y+z}{2}=1\)

Bình luận (0)
Nguyễn Anh Quân
30 tháng 6 2017 lúc 22:37

Xét x^2/y+z +1/4(y+z) >= 2.\(.\sqrt{\frac{x^2.1\left(y+z\right)}{4\left(y+z\right)}}\)=x

Tương tự ...... A >= x+y+z - 1/4(x+y)+1/4(y+z)+1/4(z+x)=1/2(x+y+z)=1

Dấu "=" xảy ra <=> x=y=z=2/3

Vậy Min A= 1 <=> x=y=z=2/3

Bình luận (0)
Quỳnh Chi
15 tháng 2 2020 lúc 10:13

Bạn kia trả lời đúng rồi nhoa :))

Hok tốt

~ nhé bạn ~

Bình luận (0)

Các câu hỏi tương tự

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN