Violympic toán 6

Phương Lê Thị Mai

22. Tìm các số tự nhiên n để các số sau nguyên tố cùng nhau: a) 7n + 13 và 2n + 4 ; b) 9n + 24 và 3n + 4 ; c) 18n + 3 và 21n + 7

Nguyễn Thị Thùy Trâm
Nguyễn Thị Thùy Trâm 17 tháng 3 2020 lúc 15:48

a) 7n + 13 và 2n + 4

ƯC (7n + 13 ; 2n + 4) = d

\(\Rightarrow\left[{}\begin{matrix}\text{ 7n + 13 ⋮ d}\\\text{2n + 4 ⋮ d}\end{matrix}\right.\)

⇒ 7(2n + 4) - 2(7n + 13) ⋮ d

⇒ 2 ⋮ d

d = 1; 2

Xét thấy 7n + 13 không chia hết cho 2 ⇒ d = 1

Để 7n + 13 và 2n + 4 là hai số sau nguyên tố cùng nhau

Thì 7n + 13 là lẻ ⇒ 7n chẵn ⇒ n chẵn

➤ Vậy n chẵn thì hai số đó là hai số nguyên tố cùng nhau

b) 9n + 24 và 3n + 4

\(\Rightarrow\left[{}\begin{matrix}\text{9n + 24 ⋮ d }\\\text{3n + 4 ⋮ d }\end{matrix}\right.\)

⇒ 9n + 24 - 3(3n + 4) ⋮ d

⇒ 12 ⋮ d

d = 1; 2; 3; 4; 6; 12

3n + 4 không chia hết cho 3; 4; 6; 12 ⇒ d = 1; 2

Để 9n + 24 và 3n + 4 là hai số sau nguyên tố cùng nhau

Thì 9n + 24 là lẻ ⇒ 9n lẻ ⇒ lẻ

➤ Vậy n lẻ thì hai số đó là hai số nguyên tố cùng nhau

c) 18n + 3 và 21n + 7

\(\Rightarrow\left[{}\begin{matrix}\text{18n + 3 ⋮ d}\\\text{21n + 7 ⋮ d }\end{matrix}\right.\)

⇒ 6(21 + 7) - 7(18 + 3) ⋮ d

⇒ 21 ⋮ d

d = 3; 7

18n + 3 không chia hết cho 3 ⇒ d = 7

Để 18n + 3 và 21n + 7 là hai số sau nguyên tố cùng nhau

Thì n = 7k - 1 (k ∈ N)

➤ Vậy n = 7k - 1 (k ∈ N) thì hai số đó là hai số nguyên tố cùng nhau

Bình luận (0)

Các câu hỏi tương tự

Khoá học trên OLM của Đại học Sư phạm HN

Loading...

Khoá học trên OLM của Đại học Sư phạm HN