Violympic toán 9

Phác Chí Mẫn

Cho a, b, c dương thỏa a + b + c = 3. Cm: \(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge a^2+b^2+c^2\)

Nguyễn Việt Lâm
15 tháng 2 2020 lúc 1:53

\(VT\ge\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=\frac{a+b+c}{abc}=\frac{\left(a+b+c\right)^2}{abc\left(a+b+c\right)}\ge\frac{3\left(a+b+c\right)^2}{\left(ab+bc+ca\right)^2}\) (1)

Mặt khác:

\(\left(a+b+c\right)^2=\left(a^2+b^2+c^2\right)+2\left(ab+bc+ca\right)\ge3\sqrt[3]{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2}\)

\(\Leftrightarrow\left(a+b+c\right)^6\ge27\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2\)

\(\Leftrightarrow\frac{\left(a+b+c\right)^6}{27\left(ab+bc+ca\right)^2}\ge a^2+b^2+c^2\Leftrightarrow\frac{\left(a+b+c\right)^2.3^4}{27\left(ab+bc+ca\right)^2}\ge a^2+b^2+c^2\)

\(\Leftrightarrow\frac{3\left(a+b+c\right)^2}{\left(ab+bc+ca\right)^2}\ge a^2+b^2+c^2\) (2)

(1);(2) \(\Rightarrow\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\ge a^2+b^2+c^2\)

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
Phác Chí Mẫn
Xem chi tiết
Sakura
Xem chi tiết
btde
Xem chi tiết
Phác Chí Mẫn
Xem chi tiết
ĐỖ THỊ THANH HẬU
Xem chi tiết
fghj
Xem chi tiết
Mai Thị Loan
Xem chi tiết
sjbjscb
Xem chi tiết
Nguyễn Thùy Chi
Xem chi tiết