Bài 12: Số thực

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
David Santas

Tìm x,y biết: \(\left(7x-5y\right)^{2018}+\left(3x-2z\right)^{2020}+\left(xy+yz+zx-4500\right)^{2022}=0\)

Akai Haruma
12 tháng 1 2020 lúc 17:47

Lời giải:

Ta thấy:

$(7x-5y)^{2018}\geq 0, \forall x,y$

$(3x-2z)^{2020}\geq 0, \forall x,z$

$(xy+yz+xz-4500)^{2022}\geq 0, \forall x,y,z$

Do đó để tổng $(7x-5y)^{2018}+(3x-2z)^{2020}+(xy+yz+xz-4500)^{2022}=0$ thì:

$(7x-5y)^{2018}=(3x-2z)^{2020}=(xy+yz+xz-4500)^{2022}=0$

$\Leftrightarrow$ \(\left\{\begin{matrix} 7x=5y(1)\\ 3x=2z(2)\\ xy+yz+xz=4500(3)\end{matrix}\right.\)

Từ $(1);(2)\Rightarrow y=\frac{7}{5}x; z=\frac{3}{2}x$

Thay vào $(3)$:

$x.\frac{7}{5}x+\frac{7}{5}x.\frac{3}{2}x+x.\frac{3}{2}x=4500$

$\Leftrightarrow x^2=900\Rightarrow x=\pm 30$

Nếu $x=30\Rightarrow y=42; z=45$

Nếu $x=-30\Rightarrow y=-42; z=-45$

Khách vãng lai đã xóa
Vũ Minh Tuấn
12 tháng 1 2020 lúc 18:43

!

Khách vãng lai đã xóa
Vũ Minh Tuấn
12 tháng 1 2020 lúc 18:48

Cách khác:

\(\left(7x-5y\right)^{2018}+\left(3x-2z\right)^{2020}+\left(xy+yz+zx-4500\right)^{2022}=0\)

Ta có:

\(\left\{{}\begin{matrix}\left(7x-5y\right)^{2018}\ge0\\\left(3x-2z\right)^{2020}\ge0\\\left(xy+yz+zx-4500\right)^{2022}\ge0\end{matrix}\right.\forall x,y,z.\)

\(\Rightarrow\left(7x-5y\right)^{2018}+\left(3x-2z\right)^{2020}+\left(xy+yz+zx-4500\right)^{2022}\ge0\) \(\forall x,y,z.\)

\(\Rightarrow\left(7x-5y\right)^{2018}+\left(3x-2z\right)^{2020}+\left(xy+yz+zx-4500\right)^{2022}=0\)

\(\Rightarrow\left\{{}\begin{matrix}\left(7x-5y\right)^{2018}=0\\\left(3x-2z\right)^{2020}=0\\\left(xy+yz+zx-4500\right)^{2022}=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}7x-5y=0\\3x-2z=0\\xy+yz+zx-4500=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}7x=5y\\3x=2z\\xy+yz+zx=4500\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\frac{x}{5}=\frac{y}{7}\\\frac{x}{2}=\frac{z}{3}\\xy+yz+zx=4500\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{10}=\frac{y}{14}\\\frac{x}{10}=\frac{z}{15}\\xy+yz+zx=4500\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\frac{x}{10}=\frac{y}{14}=\frac{z}{15}\\xy+yz+zx=4500\end{matrix}\right.\)

Đặt \(\frac{x}{10}=\frac{y}{14}=\frac{z}{15}=k\Rightarrow\left\{{}\begin{matrix}x=10k\\y=14k\\z=15k\end{matrix}\right.\)

Có: \(xy+yz+zx=4500\)

\(\Rightarrow10k.14k+14k.15k+15k.10k=4500\)

\(\Rightarrow140.k^2+210.k^2+150.k^2=4500\)

\(\Rightarrow k^2.\left(140+210+150\right)=4500\)

\(\Rightarrow k^2.500=4500\)

\(\Rightarrow k^2=4500:500\)

\(\Rightarrow k^2=9\)

\(\Rightarrow k=\pm3.\)

+ TH1: \(k=3.\)

\(\Rightarrow\left\{{}\begin{matrix}x=10.3=30\\y=14.3=42\\z=15.3=45\end{matrix}\right.\)

+ TH2: \(k=-3.\)

\(\Rightarrow\left\{{}\begin{matrix}x=10.\left(-3\right)=-30\\y=14.\left(-3\right)=-42\\z=15.\left(-3\right)=-45\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(30;42;45\right),\left(-30;-42;-45\right).\)

Chúc bạn học tốt!

Khách vãng lai đã xóa

Các câu hỏi tương tự
Nguyễn Quốc Việt
Xem chi tiết
Nguyễn Quốc Việt
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Bùi Nguyễn Anh Thu
Xem chi tiết
Cự Giải Kute _ Dễ Thương...
Xem chi tiết
Đặng Hiền Linh
Xem chi tiết