Ôn tập cuối năm môn Đại số

octobot123
Xem chi tiết
văn tài
26 tháng 7 2017 lúc 9:05

Ta có \(y'=3-\dfrac{8}{x^3}\).

\(y'=0\Leftrightarrow3-\dfrac{8}{x^3}=0\Leftrightarrow x=\dfrac{2}{\sqrt[3]{3}}\Rightarrow y=\dfrac{9}{\sqrt[3]{3}}=3\sqrt[3]{9}.\)

Vậy min \(y=3\sqrt[3]{9}\).

Bình luận (2)
Trinh Ngoc Tien
Xem chi tiết
Huy Nguyễn
Xem chi tiết
Huy Nguyễn
27 tháng 6 2017 lúc 21:14

Các bạn mik ấn lộn Toán 8 thành Toán 10 mog các ban thog cảm

Bình luận (0)
Legolas
Xem chi tiết
Ngô Thanh Sang
22 tháng 6 2017 lúc 10:18

Câu hỏi hay luôn:))

Không mất tính tổng quát giả sử \(a\ge b\ge c\). Khi đó \(max\left\{\left(a-b\right)^2,\left(b-c\right)^2,\left(c-a\right)^2\right\}=\left(a-c\right)^2\)

Như vậy, ta sẽ tìm k sao cho \(ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}+k\left(a-c\right)^2\le a^2+b^2+c^2\)

Cho c = 0, a = 2b ta được \(\dfrac{-1}{4}\le k\le\dfrac{1}{2}\). Ta sẽ C/m \(ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}+k\left(a-c\right)^2\le a^2+b^2+c^2\) với mọi \(\dfrac{-1}{4}\le k\le\dfrac{1}{2}\)

Ta có:

\(ab+bc+ca\le\dfrac{\left(a+b+c\right)^2}{3}+k\left(a-c\right)^2\Leftrightarrow\left(k+\dfrac{1}{4}\right)\left(a-c\right)^2+\dfrac{1}{12}\left(a+c-2b\right)^2\ge0\)

Nên BĐT đầu tiên đúng. Đồng thời:

\(\dfrac{\left(a+b+c\right)^2}{3}+k\left(a-c\right)^2\le a^2+b^2+c^2\Leftrightarrow\left(\dfrac{1}{2}-k\right)\left(a-c\right)^2+\dfrac{1}{6}\left(a+c-2b\right)^2\ge0\)

Nên BĐT thứ 2 cũng đúng

Bình luận (0)
Legolas
Xem chi tiết
Ngô Thanh Sang
21 tháng 6 2017 lúc 15:48

Bài này là bài thi vào lớp 10 hả

Dễ thôi

Ta sẽ C/m:

\(\dfrac{\left(2x^2+y\right)\left(4x+y^2\right)}{\left(2x+y-2\right)^2}\ge2x+y-\dfrac{1}{2}\)

\(\Leftrightarrow\left(2xy-6x-3y+2\right)^2\ge0\) ( đúng )

C/m tương tự ta được: \(P\ge-1\). Vậy GTNN của P là -1 khi \(x=y=\dfrac{9+\sqrt{65}}{4}\) hoặc \(x=y=\dfrac{9-\sqrt{65}}{4}\)

Bình luận (0)
Rin Kayama
Xem chi tiết
Kuro Kazuya
15 tháng 6 2017 lúc 14:44

\(BĐT\Leftrightarrow35\left(a^2+b^2+c^2\right)\ge9\left(a+b+c\right)^2+\dfrac{72abc}{a+b+c}\)

Theo hệ quả của bất đẳng thức Cauchy

\(\Rightarrow3\left(a^2+b^2+c^2\right)\ge\left(a+b+c\right)^2\)

\(\Rightarrow35\left(a^2+b^2+c^2\right)\ge9\left(a+b+c\right)^2+8\left(a^2+b^2+c^2\right)\)

Cần chứng minh rằng \(8\left(a^2+b^2+c^2\right)\ge\dfrac{72abc}{a+b+c}\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)\left(a+b+c\right)\ge9abc\)

Áp dụng bất đẳng thức Cauchy

\(\Rightarrow\left(a^2+b^2+c^2\right)\left(a+b+c\right)\ge3\sqrt[3]{a^2b^2c^2}.3\sqrt[3]{abc}=9abc\left(đpcm\right)\)

Vậy \(8\left(a^2+b^2+c^2\right)\ge\dfrac{72abc}{a+b+c}\) \(\Rightarrow9\left(a+b+c\right)^2+8\left(a^2+b^2+c^2\right)\ge9\left(a+b+c\right)^2+\dfrac{72abc}{a+b+c}\)

\(\Rightarrow\)\(35\left(a^2+b^2+c^2\right)\ge9\left(a+b+c\right)^2+\dfrac{72abc}{a+b+c}\) ( đpcm )

Bình luận (0)
Nguyễn Xuân Lực
Xem chi tiết
Lightning Farron
25 tháng 5 2017 lúc 23:14

http://k2pi.net.vn/...sqrt-a-2-b-2-sqrt-b-2-c-2-sqrt-c-2-a-2-3-sqrt-2-le-2-sqrt-2-a-b-c

Bình luận (0)
anh phùng quang
Xem chi tiết
Trân Vũ
Xem chi tiết
qwerty
18 tháng 5 2017 lúc 7:34

Bài 1:

Gọi số thứ nhất là x (x \(\in\) R)

Gọi số thứ hai là 2x

Theo bài ra, ta có: hiệu của hai số là 22

=> x - 2x = 22

=> -x = 22

=> x = -22

hay 2x - x = 22 => x = 22

Vì số thứ hai gấp đôi số thứ nhất và hai số phải là số dương nên số thứ hai là 2.22 = 44.

Vậy số thứ nhất là 22, số thứ hai là 44.

Bài 4:

Gọi số học sinh lớp 9A và 9B lần lượt là x và y (x>0) (y>0)

Vì tổng số học sinh mỗi lớp là 80 học sinh nên ta có pt : x + y = 80 (h/s) (1)

Vì mỗi em lớp 9A góp 2 quyển và mỗi em 9B góp 3 quyển nên cả hai lớp góp được 198 quyển, nên ta có pt:

2x + 3y = 198 (2)

Từ (1) và (2), ta có hệ phương trình :

x + y= 802

x + 3y = 198

Giải hệ ta được số học sinh lớp 9a là 42 học sinh; 9b là 38 học sinh.

Bình luận (0)
qwerty
18 tháng 5 2017 lúc 7:28

Lần sau đăng cho đúng chủ đề nha bạn

Bình luận (1)
Minh Minh
Xem chi tiết
Võ Đông Anh Tuấn
15 tháng 5 2017 lúc 11:42

Áp dụng BĐT Côsi-Shaw ta có :

\(A=\dfrac{1}{\sqrt[3]{a+7b}}+\dfrac{1}{\sqrt[3]{b+7c}}+\dfrac{1}{\sqrt[3]{c+7a}}\ge\dfrac{9}{\sqrt[3]{a+7b}+\sqrt[3]{b+7c}+\sqrt[3]{c+7a}}\)

Đặt \(B=\sqrt[3]{a+7b}+\sqrt[3]{b+7c}+\sqrt[3]{c+7a}\)

Ta sẽ có : \(\dfrac{9}{B}\)

Mà : \(\dfrac{9}{B}\) đạt GTNN khi B lớn nhất .

Áp dụng BĐT Cô si , ta có :

\(\sqrt[3]{\left(a+7b\right).8.8}\le\dfrac{a+7b+8+8}{3}\) ( 1 )

Tương tự , ta có :

\(\sqrt[3]{\left(b+7c\right).8.8}\le\dfrac{b+7c+8+8}{3}\left(2\right)\)

\(\sqrt[3]{\left(c+7a\right).8.8}\le\dfrac{c+7a+8+8}{3}\) \(\left(3\right)\)

Cộng từng vế của \(\left(1\right),\left(2\right),\left(3\right)\) ta có :

\(4.\left(\sqrt[3]{a+7b}+\sqrt[3]{b+7c}+\sqrt[3]{c+7a}\right)\le\dfrac{8}{3}\left(a+b+c\right)+16\)

\(\Leftrightarrow4B\le24\)

\(\Leftrightarrow B\le6\)

Vậy \(Max_B=6\) \(\Leftrightarrow Min_A=\dfrac{9}{6}=\dfrac{3}{2}\)

Dấu " = " xảy ra khi \(a=b=c=1.\)

Sai thôi nha leuleu

Bình luận (6)
Kuro Kazuya
16 tháng 5 2017 lúc 5:28

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow A\ge3\sqrt[3]{\dfrac{1}{\sqrt[3]{\left(a+7b\right)\left(b+7c\right)\left(c+7a\right)}}}\) (1)

Áp dụng bất đẳng thức Cauchy - Schwarz

\(\Rightarrow\sqrt[3]{\left(a+7b\right)\left(b+7c\right)\left(c+7a\right)}\le\dfrac{8\left(a+b+c\right)}{3}=8\)

\(\Rightarrow\dfrac{1}{\sqrt[3]{\left(a+7b\right)\left(b+7c\right)\left(c+7a\right)}}\ge\dfrac{1}{8}\)

\(\Rightarrow3\sqrt[3]{\dfrac{1}{\sqrt[3]{\left(a+7b\right)\left(b+7c\right)\left(c+7a\right)}}}\ge3\sqrt[3]{\dfrac{1}{8}}=\dfrac{3}{2}\) (2)

Từ (1) và (2)

\(\Rightarrow A\ge\dfrac{3}{2}\)

\(\Rightarrow A_{min}=\dfrac{3}{2}\)

Dấu " = " xảy ra khi \(a=b=c=1\)

Bình luận (0)
Võ Đông Anh Tuấn
15 tháng 5 2017 lúc 11:27

Toán lớp 10 đây à vui

Bình luận (0)