Bài 1: Hiệu của hai số dương là 22. Biết số này gấp đôi số kia. Tìm hai số dương?
Bài 2: Phương trình nào là phương trình bậc nhất một ẩn? Vì sao?
A. \(\dfrac{x}{5}=0\) B. \(\dfrac{5}{x}=0\)
C. \(x+x^2=0\) D. \(0x+5=0\)
Bài 3: Cho a.b.c=1 và \(a+b+c>\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\) . Chứng minh rằng: \(\left(a-1\right).\left(b-1\right).\left(c-1\right)>0\)
Bài 4: Hai lớp 9A và 9B có 80 học sinh. Trong đợt góp sách ủng hộ mỗi em lớp 9A góp 2 quyển và mỗi em lớp 9B góp 3 quyển nên cả hai lớp góp được 198 quyển. Tìm số học sinh mỗi lớp.
Bài 5: Tìm giá trị nhỏ nhất: \(\dfrac{27-12x}{x^2+9}\)
Bài 6: Cho 2 số a và b thỏa mãn: \(a\ge1,b\ge1.\) Chứng minh : \(\dfrac{1}{1+a^2}+\dfrac{1}{1+b^2}\ge\dfrac{2}{1+ab}\)
Bài 7: Chứng minh rằng: \(a^4+b^4+c^4+d^4\ge4abcd\)
Bài 1:
Gọi số thứ nhất là x (x \(\in\) R)
Gọi số thứ hai là 2x
Theo bài ra, ta có: hiệu của hai số là 22
=> x - 2x = 22
=> -x = 22
=> x = -22
hay 2x - x = 22 => x = 22
Vì số thứ hai gấp đôi số thứ nhất và hai số phải là số dương nên số thứ hai là 2.22 = 44.
Vậy số thứ nhất là 22, số thứ hai là 44.
Bài 4:
Gọi số học sinh lớp 9A và 9B lần lượt là x và y (x>0) (y>0)
Vì tổng số học sinh mỗi lớp là 80 học sinh nên ta có pt : x + y = 80 (h/s) (1)
Vì mỗi em lớp 9A góp 2 quyển và mỗi em 9B góp 3 quyển nên cả hai lớp góp được 198 quyển, nên ta có pt:
2x + 3y = 198 (2)
Từ (1) và (2), ta có hệ phương trình :
x + y= 802
x + 3y = 198
Giải hệ ta được số học sinh lớp 9a là 42 học sinh; 9b là 38 học sinh.