Bài 1: Số phức

Pé Pun Pin
Xem chi tiết
Đỗ Đại Học.
15 tháng 4 2016 lúc 18:19

giả sử z= a+ bi( a, b ϵ R)

từ giả thiết có ===> | a+ bi- 4i |+ |a+bi+4i|= 10

↔ |a+i(b-4)| +|a+(b+4)i|=10

↔ \(\sqrt{a^2+\left(b-4\right)^2}\) +\(\sqrt{a^2+\left(b+4\right)^2}\) =10

bình phương 2 vế, rút gọn thu được:

2a2+ 2b2+32+ 2\(\sqrt{\left(\left(a^2+\left(b-4\right)^2\right)\right).\left(\left(a^2+\left(b+4\right)^2\right)\right)}\)=100

bình phương tiếp:

 

Lê Nguyễn Song Toàn
16 tháng 6 2016 lúc 1:45

gọi z=x+yi ( x, y \(\in\) R)

ta có:\(\sqrt{\left(x^2+\left(y-4\right)^2\right)}+\sqrt{x^2+\left(y+4\right)^2}=10\)

<=> \(\sqrt{\left(x^2+\left(y-4\right)^2\right)}=10-\sqrt{x^2+\left(y+4\right)^2}\)

<=> \(x^2+\left(y-4\right)^2=100-20\sqrt{x^2+\left(y+4\right)^2}+x^2+\left(y+4\right)^2\)

<=> \(5\sqrt{\left(x^2+\left(y+4\right)^2\right)}=25+4y\)

<=> \(\begin{cases}y\ge\frac{-25}{4}\\25\left(x^2+\left(y+4\right)^2\right)=625+200y+16y^2\end{cases}\)

<=> \(\begin{cases}y\ge\frac{-25}{4}\\25x^2+25\left(y^2+8y+16\right)=625+200y+16y^2\end{cases}\)

<=>\(\begin{cases}y\ge\frac{-25}{4}\\9y^2+25x^2=225\end{cases}\)

<=>\(\begin{cases}y\ge\frac{-25}{4}\\\frac{y^2}{25}+\frac{x^2}{9}=1\end{cases}\)

ta thấy phương trình trên là một phương trình elip.

Kết luận: Vậy tập hợp điểm biểu diễn số phức Z thỏa mãn điều kiện trên là một hình elip có phương trình:

\(\frac{y^2}{25}+\frac{x^2}{9}=1\)

đúng thì tick cho mình biết nhé!!!haha

 

Hoàng Nhung
Xem chi tiết
Akai Haruma
6 tháng 3 2017 lúc 21:56

Câu 1)

Ta có \(I=\int ^{1}_{0}\frac{dx}{\sqrt{3+2x-x^2}}=\int ^{1}_{0}\frac{dx}{4-(x-1)^2}\).

Đặt \(x-1=2\cos t\Rightarrow \sqrt{4-(x-1)^2}=\sqrt{4-4\cos^2t}=2|\sin t|\)

Khi đó:

\(I=\int ^{\frac{2\pi}{3}}_{\frac{\pi}{2}}\frac{d(2\cos t+1)}{2\sin t}=\int ^{\frac{2\pi}{3}}_{\frac{\pi}{2}}\frac{2\sin tdt}{2\sin t}=\int ^{\frac{2\pi}{3}}_{\frac{\pi}{2}}dt=\left.\begin{matrix} \frac{2\pi}{3}\\ \frac{\pi}{2}\end{matrix}\right|t=\frac{\pi}{6}\)

Câu 3)

\(K=\int ^{3}_{2}\ln (x^3-3x+2)dx=\int ^{3}_{2}\ln [(x+2)(x-1)^2]dx\)

\(=\int ^{3}_{2}\ln (x+2)d(x+2)+2\int ^{3}_{2}\ln (x-1)d(x-1)\)

Xét \(\int \ln tdt\): Đặt \(\left\{\begin{matrix} u=\ln t\\ dv=dt\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{dt}{t}\\ v=t\end{matrix}\right.\Rightarrow \int \ln t dt=t\ln t-t\)

\(\Rightarrow K=\left.\begin{matrix} 3\\ 2\end{matrix}\right|(x+2)[\ln (x+2)-1]+2\left.\begin{matrix} 3\\ 2\end{matrix}\right|(x-1)[\ln (x-1)-1]\)

\(=5\ln 5-4\ln 4-1+4\ln 2-2=5\ln 5-4\ln 2-3\)

Akai Haruma
6 tháng 3 2017 lúc 22:05

Bài 2)

\(J=\int ^{1}_{0}x\ln (2x+1)dx\). Đặt \(\left\{\begin{matrix} u=\ln (2x+1)\\ dv=xdx\end{matrix}\right.\Rightarrow \left\{\begin{matrix} du=\frac{2dx}{2x+1}\\ v=\frac{x^2}{2}\end{matrix}\right.\)

Khi đó:

\(J=\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{x^2\ln (2x+1)}{2}-\int ^{1}_{0}\frac{x^2}{2x+1}dx\)\(=\frac{\ln 3}{2}-\frac{1}{4}\int ^{1}_{0}(2x-1+\frac{1}{2x+1})dx\)

\(=\frac{\ln 3}{2}-\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{x^2-x}{4}-\frac{1}{8}\int ^{1}_{0}\frac{d(2x+1)}{2x+1}=\frac{\ln 3}{2}-\left.\begin{matrix} 1\\ 0\end{matrix}\right|\frac{\ln (2x+1)}{8}\)

\(=\frac{\ln 3}{2}-\frac{\ln 3}{8}=\frac{3\ln 3}{8}\)

Akai Haruma
6 tháng 3 2017 lúc 22:36

Câu 5)

\(J=\underbrace{\int ^{3}_{1}\frac{3dx}{(x+1)^2}}_{A}+\underbrace{\int ^{3}_{1}\frac{\ln xdx}{(x+1)^2}}_{B}\)

Ta có: \(A=\int ^{3}_{1}\frac{3d(x+1)}{(x+1)^2}=\left.\begin{matrix} 3\\ 1\end{matrix}\right|\frac{-3}{x+1}=\frac{3}{4}\)

\(B=\int ^{3}_{1}\frac{\ln xdx}{(x+1)^2}=\left.\begin{matrix} 3\\ 1\end{matrix}\right|\frac{-\ln x}{x+1}+\int ^{3}_{1}\frac{dx}{x(x+1)}=\frac{-\ln 3}{4}+\left.\begin{matrix} 3\\ 1\end{matrix}\right|(\ln |x|-\ln|x+1|)\)

\(B=\frac{-\ln 3}{4}+(\ln 3-\ln 4)+\ln 2=\frac{3}{4}\ln 3-\ln 2\)

Nguyễn Phi Nam
Xem chi tiết
Tuấn Đỗ
Xem chi tiết
Nguyễn Hoàng Việt
13 tháng 2 2017 lúc 21:48

Xét riêng: \(\frac{\left|z\right|^4}{z^2}=\left(\frac{\left|z\right|^2}{z}\right)^2=\left(\left|z\right|^2\cdot\frac{\overline{z}}{\left|z\right|^2}\right)=\left(\overline{z}\right)^2=w\)

Thay w vào phương trình, ta có:

\(w^2+w+\frac{200}{1-7i}=0\\ \Delta=1-4\cdot\frac{200}{1-7i}=-15-112i\\ \Rightarrow\Delta=\left(7-8i\right)^2\)

Phương trình có 2 nghiệm là:

\(\left[\begin{matrix}w=-4+4i\\w=3-4i\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}z=-4-4i\\z=3+4i\end{matrix}\right.\)

Nguyễn Ngọc Thúy Vy
Xem chi tiết
Akai Haruma
21 tháng 3 2017 lúc 20:23

Câu 55)

Ta có tọa độ các điểm là:\(M(1,5),N(3,-1),P(6,0)\)

\(\Rightarrow MN=2\sqrt{10};MP=5\sqrt{2};NP=\sqrt{10}\)

Nhận thấy \(MN^2+NP^2=MP^2\) nên tam giác tạo bởi ba điểm là tam giác vuông.

Đáp án C

Câu 56)

Đặt \(z=a+bi(a,b\in\mathbb{R})\)

Khi đó

\(|z+2-3i|=|\overline{z}-4+i|\Leftrightarrow |(a+2)+i(b-3)|=|(a-4)+i(1-b)|\)

\(\Leftrightarrow (a+2)^2+(b-3)^2=(a-4)^2+(b-1)^2\)

\(\Leftrightarrow 3a-b-1=0\)

Đáp án A

Akai Haruma
21 tháng 3 2017 lúc 20:28

Câu 57:

Câu này thử thôi:

Biết tọa độ \(A(1,3),B(-2,2),C(-4,-2),D(1,-7),M(-3,4),N(1,-3),P(-3,2)\)

Tọa độ trọng tâm:

\(G(ABC)=\left(\frac{1-2-4}{3},\frac{3+2-2}{3}\right)=(\frac{-5}{3},1)=\left(\frac{-3+1-3}{3},\frac{4-3+2}{3}\right)=G(MNP)\)

nên A đúng

Nhìn trên mp tọa độ thì C đúng

Tính được độ dài các cạnh \(AB,MN,BC,NP\)

Tam giác $ABC$ và $MNP$ đồng dạng thì \(\frac{AB}{MN}=\frac{BC}{NP}\). Dựa vào độ dài vừa tính ta suy ra \(\frac{AB}{MN}\neq \frac{BC}{NP}\)

nên đáp án B sai

Akai Haruma
21 tháng 3 2017 lúc 21:02

Câu 58:

\(|z-i|=1\Leftrightarrow |a+i(b-1)|=1\Rightarrow a^2+(b-1)^2=1\)

Do đó điểm biểu diễn của số phức $z$ thuộc đường tròn.

Đáp án B

Câu 59)

B đúng vì mo- đun của số phức $z$ cũng chính là khoảng cách từ $O$ đến điểm biểu diễn số phức $z$ đó suy ra \(OA=OB=OC\)

Câu 60)

\(|z-i|+|z+i|=4\)

\(\Leftrightarrow \sqrt{a^2+(b-1)^2}+\sqrt{a^2+(b+1)^2}=4\)

Biến đổi ta suy ra điểm biểu diễn thuộc đường elip (đáp án D)

Mẹo: Khi đề bài ra những dạng cộng modun tương tự bạn cứ hiểu là điểm biểu diễn là hình elip nhá.

Tuấn Đỗ
Xem chi tiết
nguyen ngoc song thuy
6 tháng 4 2017 lúc 12:30

\(\left|\omega\right|_{min}=1\)

Tuấn Đỗ
Xem chi tiết
Akai Haruma
4 tháng 7 2017 lúc 18:30

Lời giải:

Ta có:

\(|z^2+1|=4|z|\Leftrightarrow \frac{|z^2+1|^2}{|z|^2}=16\)

\(\Leftrightarrow 16=\frac{(z^2+1)(\overline{z^2}+1)}{|z|^2}=\frac{|z|^4+z^2+\overline{z^2}+1}{|z|^2}\)

\(\Leftrightarrow 16=\frac{|z|^4+(z+\overline{z})^2-2|z|^2+1}{|z|^2}\geq \frac{|z|^4-2|z|^2+1}{|z|^2}\)

Đặt \(|z|^2=t\Rightarrow 16\geq \frac{t^2-2t+1}{t}\)

\(\Leftrightarrow t^2-18t+1\leq 0\Leftrightarrow 9-4\sqrt{5}\leq t\leq 9+4\sqrt{5}\)

\(\Rightarrow \sqrt{5}-2\leq |z|\leq \sqrt{5}+2\) hay \(|z|_{\min}=\sqrt{5}-2;|z|_{\max}=\sqrt{5}+2\)

Tổng quát: Nếu \(|z+\frac{1}{z}|=k\Rightarrow |z|_{\max}=\frac{\sqrt{k^2+4}+k}{2};|z|_{\min}=\frac{\sqrt{k^2+4}-k}{2}\)

Vân Nguyễn
Xem chi tiết
Akai Haruma
12 tháng 7 2017 lúc 23:20

Giải:

\(\text{PT}\Leftrightarrow |z^4+4|^2=|z|^2|z+2i|^2\Leftrightarrow (z^4+4)(\overline{z}^4+4)=z\overline{z}(z+2i)(\overline{z}-2i)\)

Đặt \(\left\{\begin{matrix} a=z\\ b=\overline{z}\end{matrix}\right.\Rightarrow (a^4+4)(b^4+4)=ab[ab-2ai+2bi+4]=2ab(ab-ai+bi+1)-a^2b^2+2ab\)

Đặt \(ab=t\Rightarrow t=|z|^2\geq 0;t\in \mathbb{Z}\). Dễ thấy \(t\neq 0\)

Phương trình ở trên tương đương, kết hợp BĐT AM-GM:

\((a^4+4)(b^4+4)=2ab|z+i|^2-a^2b^2+2ab\)

\(\Leftrightarrow |z+i|^2=\frac{(a^4+4)(b^4+4)+a^2b^2-2ab}{2ab}\geq \frac{t^4+8t^2+t^2-2t+16}{2t}=\frac{t^3}{2}+\frac{9t}{2}+\frac{8}{t}-1\)

Đạo hàm và lập bảng biến thiên suy ra \(f(t)\geq \frac{1}{6}(\sqrt{2970+182\sqrt{273}}-6)\)

\(|z+i|^2_{\min}= \frac{1}{6}(\sqrt{2970+182\sqrt{273}}-6)\)

Nguyễn Trần Long Nhân
Xem chi tiết
Akai Haruma
22 tháng 1 2018 lúc 11:10

Lời giải:

Đặt \(z=a+bi\)

Ta có: \(|z|-2\overline{z}=-7+3i+z\)

\(\Leftrightarrow \sqrt{a^2+b^2}-2(a-bi)=-7+3i+a+bi\)

\(\Leftrightarrow (\sqrt{a^2+b^2}-2a)+2bi=(-7+a)+i(b+3)\)

\(\Rightarrow \left\{\begin{matrix} \sqrt{a^2+b^2}-2a=-7+a(1)\\ 2b=b+3(2)\end{matrix}\right.\)

Từ (2) suy ra \(b=3\)

Thay vào (1): \(\sqrt{a^2+9}=3a-7\)

\(\Rightarrow (3a-7)^2=a^2+9\)

\(\Leftrightarrow 9a^2+49-42a=a^2+9\)

\(\Leftrightarrow 8a^2-42a+40=0\)

\(\Leftrightarrow a=4\) (chọn) hoặc \(a=\frac{5}{4}\) (loại do \(a\in\mathbb{Z}\) )

Vậy số phức \(z=4+3i\)

\(\Rightarrow w=1-(4+3i)+(4+3i)^2=4+21i\)

\(\Rightarrow |w|=\sqrt{4^2+21^2}=\sqrt{457}\)

Minh Lê Văn
Xem chi tiết
Mới vô
13 tháng 1 2018 lúc 19:29

Đặt \(z = a + bi (a,b \in \mathbb{Z})\)

Ta có:

\(z^2+\left|z\right|=0\\ \Leftrightarrow\left(a+bi\right)^2+\left|a+bi\right|=0\\ \Leftrightarrow a^2-b^2+2abi+\sqrt{a^2+b^2}=0+0i\\ \Leftrightarrow\left\{{}\begin{matrix}2ab=0\left(1\right)\\a^2-b^2+\sqrt{a^2+b^2}=0\left(2\right)\end{matrix}\right.\\ \left(1\right)\Leftrightarrow\left[{}\begin{matrix}a=0\\b=0\end{matrix}\right.\\\text{Nếu }a=0\\ \Rightarrow\left(2\right)\Leftrightarrow\left|b\right|-b^2=0\\ \Leftrightarrow\left[{}\begin{matrix}b=0\\b=1\\b=-1\end{matrix}\right.\\ \text{Nếu }b=0\\ \Rightarrow\left(2\right)\Leftrightarrow\left|a\right|+a^2=0\\ \Leftrightarrow a=0\)

Vậy

\(\left(a,b\right)\in\left\{\left(0;0\right);\left(0;1\right);\left(0;-1\right)\right\}\\ \Rightarrow z\in\left\{0;i;-i\right\}\)