§1. Phương trình đường thẳng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Đặng Minh Quân
Xem chi tiết
Nguyễn Thị Quỳnh Như
7 tháng 5 2016 lúc 22:24

A B C h d

Từ giả thiết suy ra \(\overrightarrow{AB}=\left(1;4\right)\Rightarrow AB=\sqrt{26}\) và đường thẳng AB có phương trình tổng quát :

\(5x-y-7=0\)

Vì tam giác ABC có \(AB=\sqrt{26}\) và diện tích \(S=8\) nên bài toán quy về tìm điểm \(C\in d:2x+y-2=0\) sao cho \(d\left(C;Ab\right)=\frac{16}{\sqrt{26}}\)

Xét điểm \(C\left(x;2\left(1-x\right)\right)\in d\) ta có :

\(d\left(C;AB\right)=\frac{16}{\sqrt{26}}\Leftrightarrow\frac{\left|5x-2\left(1-x\right)-7\right|}{\sqrt{26}}=\frac{16}{\sqrt{26}}\)

Giải phương trình thu được \(x=-1\) hoặc \(x=\frac{25}{7}\)

Do đó tìm được 2 điểm \(C_1\left(-1;4\right)\) và \(C_2\left(\frac{25}{7};-\frac{36}{7}\right)\) thỏa mãn yêu cầu đề bài

Bình Trần Thị
Xem chi tiết
Nguyễn Trọng Hiếu
Xem chi tiết
Hoàng Thị Tâm
8 tháng 5 2016 lúc 16:32

Co A B

Vì \(2.\left(-2\right)-3+6=11>0\)

và \(2.1-3\left(-2\right)+6=14>0\) nê A,B cùng phía đối với \(\Delta\). Khi đó mọi \(C\in\Delta\) đều có :

\(\left|CA-CB\right|\le\left|C_0A-C_0B\right|=AB\)

Dấu đẳng thức xảy ra khi và chỉ khi \(C\) trùng với \(C_0\) là giao điểm của đường thẳng AB với \(\Delta\). Do đó tọa độ của điểm C cần tì là nghiệm của hệ phương trình :

\(\begin{cases}2x-3y+6=0\\\frac{x+y}{3}=\frac{y+3}{1}\end{cases}\)

Giải hệ ta được \(\left(x;y\right)=\left(-13;-\frac{20}{3}\right)\) vậy điểm cần tìm là \(C=\left(-13;-\frac{20}{3}\right)\)

Thu Hiền
Xem chi tiết
Nguyễn Đức Đạt
8 tháng 5 2016 lúc 16:50

a. Vì \(2-2.5+3=-5< 0\) và \(-4-2.5+3=-11< 0\) nên A, B cùng phía với đường thẳng \(\Delta\).

Gọi \(A'\left(x;y\right)\) là điểm đối xứng với A qua  \(\Delta\), khi đó (x;y) là nghiệm của hệ :

\(\begin{cases}\frac{x-2}{1}=\frac{y-5}{-2}\\\frac{x-2}{1}-2.\frac{y+5}{2}+3=0\end{cases}\)

Giải hệ ta được : \(\left(x;y\right)=\left(4;1\right)\) suy ra \(\overrightarrow{A'B}=\left(-8;4\right)=4\left(-2;1\right)\)

Do đó đường thẳng A'B có phương trình tham số \(\begin{cases}x=4-2t\\y=1+t\end{cases}\)\(;t\in R\)

Suy ra điểm C cần tìm có tọa độ là nghiệm của hệ :

\(\begin{cases}x=4-2t\\y=1+t\\x-2y+3=0\end{cases}\)

Giải hệ ta có điểm C \(\left(\frac{3}{2};\frac{9}{4}\right)\)

b. Gọi I là trung điểm của AB. Khi đó\(I\left(-1;5\right)\) và \(\overrightarrow{CA}+\overrightarrow{CB}=2\overrightarrow{CI}\), với mọi C.

Vậy \(C\in\Delta\) : \(\left|\overrightarrow{CA}+\overrightarrow{CB}\right|\) bé nhất \(\Leftrightarrow\left|CI\right|\) bé nhất \(\Leftrightarrow C\) là hình chiếu của I trên \(\Delta\)

Nếu \(C\left(x;y\right)\) là hình chiếu  của I trên \(\Delta\) thì (x;y) là nghiệm của hệ :

\(\begin{cases}\frac{x+1}{1}=\frac{y-5}{-2}\\x-2y+3=0\end{cases}\)

Giải hệ thu được : \(\left(x;y\right)=\left(\frac{3}{5};\frac{9}{5}\right)\) vậy \(C\left(\frac{3}{5};\frac{9}{5}\right)\)

Đoàn Minh Trang
8 tháng 5 2016 lúc 17:05

Đường thẳng \(\Delta\) có vecto pháp tuyến \(\overrightarrow{n}=\left(1;-2\right)\) nên nhận \(\overrightarrow{u}=\left(2;1\right)\) làm vecto chỉ phương.

Từ đó để ý rằng đường thẳng \(\Delta\) cắt Ox tại \(M\left(-3;0\right)\) nên \(\Delta\) có phương trình dạng tham số :

\(\begin{cases}x=-3+2t\\y=t\end{cases}\) \(\left(t\in R\right)\)

a. Xét \(C\left(-3+2t;t\right)\in\Delta\), khi đó :

\(CA+CB=\sqrt{\left(5-2t\right)^2+\left(5-t\right)^2}+\sqrt{\left(2t+1\right)^2+\left(t-5\right)^2}\)

                  \(=\sqrt{5t^2-30t+50}+\sqrt{5t^2-6t+26}\)

                  \(=\sqrt{\left(\sqrt{5}t-3\sqrt{5}\right)^2}+\sqrt{\left(\frac{3}{\sqrt{5}}-\sqrt{5}t\right)^2+\frac{121}{5}}\)

                  \(\ge\sqrt{\left(\frac{3}{\sqrt{5}}-3\sqrt{5}\right)^2+\left(\sqrt{5}+\frac{11}{\sqrt{5}}\right)^2}=4\sqrt{5}\)

Dấu đẳng thức xảy ra khi và chỉ khi

\(\frac{\sqrt{5}t-3\sqrt{5}}{\frac{3}{\sqrt{5}}-\sqrt{5}t}=\frac{5}{11}\Leftrightarrow t=\frac{9}{4}\)

Từ đó tìm được : \(C\left(\frac{3}{2};\frac{9}{4}\right)\)

b. Với \(C\left(=3+2t;t\right)\in\Delta\) ta có \(\overrightarrow{CA}=\left(5-2t;5-t\right)\) và \(\overrightarrow{CB}=\left(-1-2t;5-t\right)\)

Suy ra : \(\overrightarrow{CA}+\overrightarrow{CB}=\left(4-4t;10-2t\right)\) và do đó :

\(\left|\overrightarrow{CA}+\overrightarrow{CB}\right|=\sqrt{\left(4-4t\right)^2+\left(10-2t\right)^2}=\sqrt{\left(2\sqrt{5}t-\frac{18}{\sqrt{5}}\right)^2+\frac{256}{5}}\ge\frac{16}{\sqrt{5}}\)

Dấu đẳng thức xảy ra khi và chỉ khi \(t=\frac{9}{5}\)

Do đó điểm C cần tìm là \(\left(\frac{3}{5};\frac{9}{5}\right)\)

 

Lại Thị Hồng Liên
Xem chi tiết
Ngô Thị Ánh Vân
8 tháng 5 2016 lúc 17:29

a. Gọi I là trung điểm AB khi đó \(I\left(-1;2\right)\) và \(\overrightarrow{MA}+\overrightarrow{MB}=2\overrightarrow{MI}\) với mọi M

Do đó \(M\in\Delta\) mà \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|\) nhỏ nhất khi và chỉ khi M là hình chiếu của I trên \(\Delta\)

Gọi \(\left(x;y\right)\) là tọa độ hình chiếu của I trên \(\Delta\). Khi đó ta có hệ phương trình :

\(\begin{cases}x+y+1=0\\\frac{x+1}{1}=\frac{y-2}{1}\end{cases}\)    \(\Leftrightarrow\begin{cases}x+y+1=0\\x-y+3=0\end{cases}\)

Giải hệ thu được \(x=-2;y=1\) Vạy điểm \(M\in\Delta\) mà \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|\) nhỏ nhất là \(M\equiv I\left(-2;1\right)\)

 

 

Nguyễn Đình Hồng
8 tháng 5 2016 lúc 18:07

b) gọi J là điểm thỏa mãn \(2\overrightarrow{JA}+3\overrightarrow{JB}\)=0 khi đó \(J\left(-\frac{8}{5};\frac{9}{5}\right)\) và với mọi điểm M của mặt phẳng đều có

                                            \(2MA^2+3MB^2=2JA^2+3JB^2+5MJ^2\)

suy ra \(M\in\Delta\)mà \(2MA^2+3MB^2\)nhỏ nhất khi và chỉ khi M là hình chiếu của J trên\(\Delta\)

Gọi (x;y) là tọa độ hình chiếu của J trên \(\Delta\).khi đó ta có phương trình

                                    \(\begin{cases}x+y+1=0\\x+\frac{8}{5}=y-\frac{9}{5}\end{cases}\)\(\Leftrightarrow\begin{cases}x+y+1=0\\x-y-\frac{17}{5}=0\end{cases}\)

Giải hệ thu được : \(x=\frac{5}{6};y=-\frac{11}{5}\)

Vậy điểm M cần tìm là : \(M\left(\frac{6}{5};\frac{-11}{5}\right)\)

 

 

Bình Trần Thị
Xem chi tiết
Nguyen Thi Bich Huong
8 tháng 5 2016 lúc 20:27

khó vãi

Bình Trần Thị
Xem chi tiết
Bình Trần Thị
Xem chi tiết
Lương Đức Trọng
8 tháng 5 2016 lúc 20:57

Đường tròn đi qua M,N có tâm nằm trên trung trực của MN.

Đường trung trực của MN qua trung điểm H(-3/2;5/2) và nhận \(\overrightarrow{MN}\)(1;-1) làm VTPT nên có phương trình (x+3/2)-(y-5/2)=0, tức là x-y+4=0

Vậy tâm I là nghiệm hệ \(\begin{cases}x-y+4=0\\3x-y+10=0\end{cases}\Leftrightarrow\begin{cases}x=-3\\y=1\end{cases}}\). Vậy I(-3;1), từ đó suy ra R=IM và phương trình của đường tròn

Nguyen Thi Bich Huong
8 tháng 5 2016 lúc 20:29

khó vãi

Đặng Thị Phương Anh
Xem chi tiết
Ngọc Vĩ
8 tháng 5 2016 lúc 21:04

Bạn không biết làm câu nào vậy

Nguyễn Bình Nguyên
8 tháng 5 2016 lúc 21:06

a\(2x+3y-7=0\)

b\(3x-2y-4=0\)

c. Đường thẳng d có hệ số góc \(k=-\frac{2}{3}\), do đó d không tạo với trục hoành góc \(45^0\). Suy ra đường thẳng \(\Delta\) cần tìm, tạo với d  góc \(45^0\), không có phương vuông góc với Ox. Gọi \(l\) là hệ số góc của  \(\Delta\) , do góc giữa d và  \(\Delta\)  bằng  \(45^0\) nên ta có phương trình :

\(\left|\frac{l+\frac{2}{3}}{1-\frac{2l}{3}}\right|=1\Leftrightarrow\left|3l+2\right|=\left|3-2l\right|\)

Giải phương trình ta thu được :

\(l=\frac{1}{5}\) hoặc \(l=-5\)

* Với \(l=\frac{1}{5}\), ta được \(\Delta:x-5y+3=0\)

* Với \(l=-5\) ta được \(\Delta:5x+y-11=0\)

d. Đường thẳng t cần tìm có vecto pháp tuyến \(\overrightarrow{n}=\left(a;b\right);\left(a^2+b^2\ne0\right)\)

Do góc (t;d) = \(\alpha\) mà \(\cos\alpha=\frac{2}{\sqrt{13}}\) nên ta có phương trình :

\(\frac{\left|2a+3b\right|}{\sqrt{13}.\sqrt{a^2+b^2}}=\frac{2}{\sqrt{13}}\Leftrightarrow\left|2a+3b\right|=2\sqrt{a^2+b^2}\)

                              \(\Leftrightarrow b\left(12a+5b\right)=0\)

- Nếu \(b=0\) thì \(a\ne0\), tùy ý và do đó ta có đường thẳng \(t:x-2=0\)

- Nếu \(12a+5b=0\) do \(a^2+b^2\ne0\), có thể chọn \(a=5;b=-12\), do đó ta được đường thẳng :

\(5x-12y+2=0\)

 

 

 

 
Võ Thị Hoài Linh
Xem chi tiết
Nguyễn Nguyên Thái Thanh
8 tháng 5 2016 lúc 21:18

Từ giả thiết suy ra điểm A không nằm trên 2 cạnh có phương trình đã cho. Bởi vậy, đó là phương trình của 2 đường thẳng chứa cạnh BC, CD, chẳng hạn \(BC:2x-3y+5\)

                                                                                          \(CD:3x+2y-7=0\)

Khi đó, đường thẳng chứa cạnh AB đi qua \(A\left(2;-3\right)\) và song song với đường thẳng CD, nên có phương trình :

                       \(3\left(x-2\right)+2\left(y+3\right)=0\)

            hay : \(3x+2y=0\) ẳng chứa cạnh AD là :

                             \(2x-3y-11=0\)