§1. Phương trình đường thẳng

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Lại Thị Hồng Liên

Cho đường thẳng \(\Delta:x+y+1=0\) và 2 điểm \(A\left(2;3\right);B\left(-4;1\right)\)

Tìm trên đường thẳng \(\Delta\) điểm M sao cho :

a. Vecto \(\overrightarrow{MA}+\overrightarrow{MB}\) có độ dài ngắn nhất

b. Đại lượng \(2MA^2+3MB^2\) đạt giá trị nhỏ nhất

Ngô Thị Ánh Vân
8 tháng 5 2016 lúc 17:29

a. Gọi I là trung điểm AB khi đó \(I\left(-1;2\right)\) và \(\overrightarrow{MA}+\overrightarrow{MB}=2\overrightarrow{MI}\) với mọi M

Do đó \(M\in\Delta\) mà \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|\) nhỏ nhất khi và chỉ khi M là hình chiếu của I trên \(\Delta\)

Gọi \(\left(x;y\right)\) là tọa độ hình chiếu của I trên \(\Delta\). Khi đó ta có hệ phương trình :

\(\begin{cases}x+y+1=0\\\frac{x+1}{1}=\frac{y-2}{1}\end{cases}\)    \(\Leftrightarrow\begin{cases}x+y+1=0\\x-y+3=0\end{cases}\)

Giải hệ thu được \(x=-2;y=1\) Vạy điểm \(M\in\Delta\) mà \(\left|\overrightarrow{MA}+\overrightarrow{MB}\right|\) nhỏ nhất là \(M\equiv I\left(-2;1\right)\)

 

 

Nguyễn Đình Hồng
8 tháng 5 2016 lúc 18:07

b) gọi J là điểm thỏa mãn \(2\overrightarrow{JA}+3\overrightarrow{JB}\)=0 khi đó \(J\left(-\frac{8}{5};\frac{9}{5}\right)\) và với mọi điểm M của mặt phẳng đều có

                                            \(2MA^2+3MB^2=2JA^2+3JB^2+5MJ^2\)

suy ra \(M\in\Delta\)mà \(2MA^2+3MB^2\)nhỏ nhất khi và chỉ khi M là hình chiếu của J trên\(\Delta\)

Gọi (x;y) là tọa độ hình chiếu của J trên \(\Delta\).khi đó ta có phương trình

                                    \(\begin{cases}x+y+1=0\\x+\frac{8}{5}=y-\frac{9}{5}\end{cases}\)\(\Leftrightarrow\begin{cases}x+y+1=0\\x-y-\frac{17}{5}=0\end{cases}\)

Giải hệ thu được : \(x=\frac{5}{6};y=-\frac{11}{5}\)

Vậy điểm M cần tìm là : \(M\left(\frac{6}{5};\frac{-11}{5}\right)\)

 

 


Các câu hỏi tương tự
Thu Hiền
Xem chi tiết
Phan uyển nhi
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Sa Phạm
Xem chi tiết
Le van a
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Nguyễn Trọng Hiếu
Xem chi tiết
Sách Giáo Khoa
Xem chi tiết
Mai Anh
Xem chi tiết