§1. Đại cương về phương trình

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Phan thu trang
Xem chi tiết
Trần
Xem chi tiết
Nguyễn Thị Anh
3 tháng 8 2016 lúc 8:05

Hỏi đáp Toán

Trần
Xem chi tiết
Nguyễn Thị Anh
3 tháng 8 2016 lúc 8:04

Hỏi đáp Toán

Lê Nguyên Hạo
3 tháng 8 2016 lúc 7:59

+/ neu a khác 0 thi phuong trình có một nghiệm duy nhất x=-b/a 
+/ nếu a=0 va b khác 0 thi phương trình vô nghiệm 
a=0 va b=0 thi phuong trình có vô sô nghiệm 
VD: giai và biẹn luận phuong trình m^2(x-1)+m=x(3m-2) (1) (với m la tham số và x là ẩn) 
ta có phuong trinh(1) <=> m^2x-m^2+m-3mx+2x=0 
<=> x(m^2-3m+2)-m^2+m=0 (2) 
Nếu m^2-3m+2 khác 0 <=> m khác 2 và m khác 1=> phuong trình co nghiệm duy nhất 
x=m-m^2/m^2-3m+2 <=> x=m/m-2 
Nếu m^2-3m+2=0 <=> m=2 hoăcm=1 
vói m=2 thi phuong trình (2) trở thành 0x-2=0 => phương trình dã cho vô nghiệm 
với m=1 thi phwơng trình (2) trở thành 0x =0 => phương trình da cho có vô số nghiệm 

Trần
Xem chi tiết
Nguyễn Thị Anh
3 tháng 8 2016 lúc 8:50

Hỏi đáp Toán

Lê Nguyên Hạo
3 tháng 8 2016 lúc 8:41

f(x) = (m+1)x² - 2(m+1)x + 2m+3 

♠ m = -1: f(x) = 0.x² - 0.x + 1 = 1 > 0 với mọi x nên f(x) ≥ 0 có nghiệm x thuộc R 

♠ m # -1, có ∆' = (m+1)² - (m+1)(2m+3) = -(m+1)(m+2) 
ta biện luận theo dấu của delta': 
m│ -∞________ -2 _________ -1 ________ +∞ 
∆ │≈≈≈≈≈ - ≈≈≈≈ 0 ≈≈≈≈ + ≈≈≈≈ || ≈≈≈≈ - ≈≈≈≈≈≈ 

* nếu m < -2 => ∆' < 0, m+1 < 0 => f(x) < 0 với mọi x nên f(x) ≥ 0 vô nghiệm 

* nếu m = -2 <=> ∆' = 0 và m+1 < 0 <=> f(x) ≤ 0 với mọi x thuộc R 
=> f(x) ≥ 0 có nghiệm x = 2 (còn dính đc chổ có dấu "=" ) 

* -2 < m < -1 <=> ∆' > 0 ; f(x) có 2 lần đổi dấu => f(x) ≥ 0 có nghiệm 

* nếu m > -1 => ∆' > 0 và m+1 > 0 => f(x) > 0 với mọi x => f(x) ≥ 0 có nghiệm

Tóm lại các trường hợp: bpt f(x) ≥ 0 có nghệm khi và chỉ khi m ≥ -2 
~~~~~~~~~~ 
Cách khác: giải ngược lại ta tìm m để bpt f(x) ≥ 0 vô nghiệm 
tức là f(x) < 0 với mọi x thuộc R 
* nếu m = -1 thì như trên f(x) ≥ 0 có nghiêm 

* nếu m # -1, f(x) < 0 với mọi x thuộc R khi và chỉ khi 
{ ∆' < 0 
{ m+1 < 0 
<=> { m < -2 hoăc m > -1 
----- { m < -1 
<=> m < -2 
Vậy bpt f(x) ≥ 0 có nghiệm khi và chỉ khi m ≥ -2 
 

Trần
Xem chi tiết
Nguyễn Thị Anh
8 tháng 8 2016 lúc 8:15

ta đặt: \(\sqrt[3]{x+5}=u\)

\(\sqrt[3]{x+6}=v\)

ta có \(u^3+v^3=2x+11\)

=> \(u+v=\sqrt[3]{u^3+v^3}\)

=>\(\left(u+v\right)^3=u^3+v^3+3uv\left(u+v\right)=u^3+v^3\)

=> \(3uv\left(u+v\right)=3uv\sqrt[3]{u^3+v^3}=0\)

<=> \(3\sqrt[3]{x+5}\sqrt[3]{x+6}\sqrt[3]{2x+11}=0\)

<=> x=-5 hoặc x=-6 hoặc x=-11/2

vậy pt có 3 nghiệm ....

Bảo Nguyễn
Xem chi tiết
Hoàng Lê Bảo Ngọc
11 tháng 8 2016 lúc 13:53

ĐKXĐ của pt : \(x\ge-\frac{1}{2}\)

Ta có \(4x^3+x-\left(x+1\right)\sqrt{2x+1}=0\)

\(\Leftrightarrow-\left(x+1\right)\left(\sqrt{2x+1}-2x\right)-2x\left(x+1\right)+4x^3+x=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x-\sqrt{2x+1}\right)+x\left[4x^2-\left(2x+1\right)\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x-\sqrt{2x+1}\right)+x\left(2x-\sqrt{2x+1}\right)\left(2x+\sqrt{2x+1}\right)=0\)

\(\Leftrightarrow\left(2x-\sqrt{2x+1}\right)\left(x+1+2x^2+x\sqrt{2x+1}\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}2x-\sqrt{2x+1}=0\\x+1+2x^2+x\sqrt{2x+1}=0\end{array}\right.\)

TH1. Nếu \(2x-\sqrt{2x+1}=0\Rightarrow4x^2=2x+1\Leftrightarrow4x^2-2x-1=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{1+\sqrt{5}}{4}\\x=\frac{1-\sqrt{5}}{4}\end{array}\right.\) . Thay hai giá trị vào pt được \(x=\frac{1+\sqrt{5}}{4}\) thỏa mãn.

TH2. Nếu \(x+1+2x^2+x\sqrt{2x+1}=0\), thay x từ điều kiện \(x\ge-\frac{1}{2}\) được \(x+1+2x^2+x\sqrt{2x+1}\ge1>0\). Do đó pt này vô nghiệm.

Vậy kết luận : tập nghiệm của pt : \(S=\left\{\frac{1+\sqrt{5}}{4}\right\}\)

Lightning Farron
11 tháng 8 2016 lúc 13:31

\(4x^3+x-\left(x+1\right)\sqrt{2x+1}=0\)

\(\Leftrightarrow4x^3+x=\left(x+1\right)\sqrt{2x+1}\)

2 vế luôn dương bình lên có:

\(\left(4x^3+x\right)^2=\left[\left(x+1\right)\sqrt{2x+1}\right]^2\)

\(\Leftrightarrow16x^6+8x^4+x^2=2x^3+5x^2+4x+1\)

\(\Leftrightarrow16x^6+8x^4-2x^3-4x^2-4x-1=0\)

\(\Leftrightarrow\left(4x^2-2x-1\right)\left(4x^4+2x^3+4x^2+2x+1\right)=0\)

\(\Leftrightarrow\begin{cases}4x^2-2x-1=0\\4x^4+2x^3+4x^2+2x+1>0\end{cases}\)

\(\Leftrightarrow4x^2-2x-1=0\)

Delta=(-2)2-(-4(4.1))=20

Đối chiếu với điều kiện khi bình phương ta có:

\(x=\frac{\sqrt{5}+1}{4}\left(tm\right)\)

 

 

 

 

 

 

 

 

Hà Phương
11 tháng 8 2016 lúc 13:41

Phương trình đã cho tương đương:

\(4x^2-2x-1=0\)

Và phương trình còn lại ta xét hàm vế trái trên khoảng: \(x\ge-\frac{1}{2}\)

Ta có phương trình: \(f\left(t\right)=t+\frac{t+1}{2t+\sqrt{2x+1}}\) với \(x\ge-\frac{1}{2}\)

\(f'\left(t\right)=1+\frac{2x+\sqrt{2x+1}-\left(x+1\right)\left(2+\frac{1}{\sqrt{2x+1}}\right)}{\left(\left(2x+\sqrt{2x+1}^2\right)\right)}\)

Nhận xét: \(2x+\sqrt{2x+1}-\left(x+1\right)\left(2+\frac{1}{\sqrt{2x+1}}\right)>0\) với mọi \(x\ge-\frac{1}{2}\)

=> Pt còn lại vô nghiệm

Trần
Xem chi tiết
Nguyễn Phương HÀ
13 tháng 8 2016 lúc 12:40

Hỏi đáp Toán

Hoàng Lê Bảo Ngọc
13 tháng 8 2016 lúc 12:49

Điều kiện xác định : \(x\ge\frac{3}{2}\)

Ta có : \(5x-1=\left(\sqrt{3x-2}-\sqrt{2x-3}\right)^2\)

\(\Leftrightarrow5x-1=3x-2+2x-3-2\sqrt{3x-2}.\sqrt{2x-3}\)

\(\Leftrightarrow-2=\sqrt{3x-2}.\sqrt{2x-3}\)

Vế trái của pt luôn nhỏ hơn 0 , vế phải của pt luôn lớn hơn hoặc bằng 0

=> VT < VP => pt vô nghiệm.

Lightning Farron
13 tháng 8 2016 lúc 12:38

x vô nghiệm

Trần
Xem chi tiết
Hoàng Lê Bảo Ngọc
13 tháng 8 2016 lúc 12:45

Điều kiện xác định của pt : \(6x^2-12x+7\ge0\) => Với mọi số thực thì pt xác định

Ta có : \(2x-x^2+\sqrt{6x^2-12x+7}=0\)

\(\Leftrightarrow-\left(6x^2-12x+7\right)+6\sqrt{6x^2-12x+7}+7=0\)

Đặt \(t=\sqrt{6x^2-12x+7},t\ge0\) . pt trở thành : \(-t^2+6t+7=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}t=7\left(\text{nhận}\right)\\t=-1\left(\text{loại}\right)\end{array}\right.\)

Với \(t=7\) ta có pt : \(6x^2-12x+7=49\)

\(\Leftrightarrow6x^2-12x-42=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=1-2\sqrt{2}\\x=1+2\sqrt{2}\end{array}\right.\)

 

Nguyễn Phương HÀ
13 tháng 8 2016 lúc 12:45

Hỏi đáp Toán

Lightning Farron
13 tháng 8 2016 lúc 12:47

\(pt\Leftrightarrow\sqrt{6\left(x^2-2x\right)+7}=x^2-2x\)

Đặt \(t=2x-x^2\left(t\ge0\right)\) pt trở thành

\(\sqrt{6t+7}=t\).Ta có 2 vế dương bình phương đc:

\(6t+7=t^2\)

\(\Leftrightarrow t^2-6t-7=0\)

\(\Leftrightarrow t^2-7t+t-7=0\)

\(\Leftrightarrow t\left(t-7\right)+\left(t-7\right)=0\)

\(\Leftrightarrow\left(t+1\right)\left(t-7\right)=0\)

\(\Leftrightarrow\left[\begin{array}{nghiempt}t=-1\left(loai\right)\\t=7\left(tm\right)\end{array}\right.\).

Từ t=7 ta tìm được các giá trị của \(\left[\begin{array}{nghiempt}x=1-\sqrt{8}\\x=\sqrt{8}+1\end{array}\right.\)

 

Trần
Xem chi tiết
Hoàng Lê Bảo Ngọc
13 tháng 8 2016 lúc 21:27

Điều kiện xác định : \(2\le x\le4\)

Áp dụng bđt Bunhiacopxki vào vế trái của pt : 

\(\left(1.\sqrt{x-2}+1.\sqrt{4-x}\right)\le\left(1^2+1^2\right)\left(x-2+4-x\right)\)

\(\Rightarrow\sqrt{x-2}+\sqrt{4-x}\le2\)

Lại có vế phải : \(x^2-6x+11=\left(x^2-6x+9\right)+2=\left(x-3\right)^2+2\ge2\)

Do đó pt tương đương với \(\begin{cases}\sqrt{x-2}+\sqrt{4-x}=2\\x^2-6x+11=2\end{cases}\) \(\Leftrightarrow x=3\left(tmdk\right)\)

Vậy pt có nghiệm x = 3

Nguyễn Phương HÀ
13 tháng 8 2016 lúc 21:27

Hỏi đáp Toán

Phan thu trang
Xem chi tiết