Bài 1: Phương trình mặt phẳng

Khám phá 9 (SGK Chân trời sáng tạo - Tập 2 - Trang 41)

Hướng dẫn giải

a) Vectơ pháp tuyến \(\vec n\) có giá vuông góc với \(\left( \alpha  \right)\). Do \({M_1}\) là hình chiếu của \({M_0}\) trên \(\left( \alpha  \right)\) nên \({M_1}{M_0} \bot \left( \alpha  \right)\), suy ra \(\overrightarrow {{M_1}{M_0}} \) có giá vuông góc với \(\left( \alpha  \right)\).

Hai vectơ \(\overrightarrow {{M_1}{M_0}} \) và \(\vec n\) cùng có giá vuông góc với \(\left( \alpha  \right)\), nên chúng là hai vectơ cùng phương.

b) Ta có:

\(\overrightarrow {{M_1}{M_0}} .\vec n = A\left( {{x_0} - {x_1}} \right) + B\left( {{y_0} - {y_1}} \right) + C\left( {{z_0} - {z_1}} \right) = A{x_0} + B{y_0} + C{z_0} - \left( {A{x_1} + B{y_1} + C{z_1}} \right)\)

Do \({M_1} \in \left( \alpha  \right)\) nên \(A{x_1} + B{y_1} + C{z_1} + D = 0 \Rightarrow D =  - \left( {A{x_1} + B{y_1} + C{z_1}} \right)\).

Như vậy \(\overrightarrow {{M_1}{M_0}} .\vec n = A{x_0} + B{y_0} + C{z_0} + D\).

c) Ta có \(\overrightarrow {{M_1}{M_0}} .\vec n = \left| {\overrightarrow {{M_1}{M_0}} } \right|.\left| {\vec n} \right|.\cos \left( {\overrightarrow {{M_1}{M_0}} ,\vec n} \right)\).

Do \(\overrightarrow {{M_1}{M_0}} \) và \(\vec n\) cùng phương, nên góc giữa hai vectơ này bằng \({0^o}\) (cùng chiều) hoặc \({180^o}\) (ngược chiều).

Dễ thấy rằng \(\cos {0^o} = 1\) và \(\cos {180^o} =  - 1\). Suy ra \(\left| {\cos {0^o}} \right| = \left| {\cos {{180}^o}} \right| = 1\), điều này có nghĩa là \(\left| {\cos \left( {\overrightarrow {{M_1}{M_0}} ,\vec n} \right)} \right| = 1\).

Như vậy, \[\left| {\overrightarrow {{M_1}{M_0}} .\vec n} \right| = \left| {\overrightarrow {{M_1}{M_0}} } \right|.\left| {\vec n} \right|.\left| {\cos \left( {\overrightarrow {{M_1}{M_0}} ,\vec n} \right)} \right| = \left| {\overrightarrow {{M_1}{M_0}} } \right|.\left| {\vec n} \right|\].

d) Ta có \({M_1}{M_0} \bot \left( \alpha  \right)\) và \({M_1} \in \left( \alpha  \right)\) nên khoảng cách từ \({M_0}\) đến mặt phẳng \(\left( \alpha  \right)\) là đoạn thẳng \({M_1}{M_0}\). Suy ra \(\left| {\overrightarrow {{M_1}{M_0}} } \right| = {M_1}{M_0} = d\left( {{M_0},\left( \alpha  \right)} \right)\).

Vậy ta có \(d\left( {{M_0},\left( \alpha  \right)} \right) = \left| {\overrightarrow {{M_1}{M_0}} } \right| = \frac{{\left| {\overrightarrow {{M_1}{M_0}} .\vec n} \right|}}{{\left| {\vec n} \right|}}\).

(Trả lời bởi datcoder)
Thảo luận (1)

Thực hành 7 (SGK Chân trời sáng tạo - Tập 2 - Trang 42)

Hướng dẫn giải

a) Chiều cao của hình chóp \(O.MNP\) chính là khoảng cách từ điểm

b) \(O\) tới mặt phẳng \(\left( {MNP} \right)\).

Mặt phẳng \(\left( {MNP} \right)\) đi qua ba điểm \(M\left( {2;1;2} \right)\), \(N\left( {3;3;3} \right)\), \(P\left( {4;5;6} \right)\) nên có một cặp vectơ chỉ phương là \(\overrightarrow {MN}  = \left( {1;2;1} \right)\) và \(\overrightarrow {MP}  = \left( {2;4;4} \right)\).

Suy ra một vectơ pháp tuyến của mặt phẳng \(\left( {MNP} \right)\) là:

\(\vec n = \left[ {\overrightarrow {MN} ,\overrightarrow {MP} } \right] = \left( {2.4 - 1.4;1.2 - 1.4;1.4 - 2.2} \right) = \left( {4; - 2;0} \right)\)

Mặt phẳng \(\left( {MNP} \right)\) đi qua \(M\left( {2;1;2} \right)\) và có một vectơ pháp tuyến \(\vec n = \left( {4; - 2;0} \right)\) nên có phương trình là \(4\left( {x - 2} \right) - 2\left( {y - 1} \right) + 0\left( {z - 2} \right) = 0 \Leftrightarrow 4x - 2y - 6 = 0\).

Khoảng cách từ điểm \(O\) tới mặt phẳng \(\left( {MNP} \right)\) là:

\(d\left( {O,\left( {MNP} \right)} \right) = \frac{{\left| {4.0 - 2.0 - 6} \right|}}{{\sqrt {{4^2} + {{\left( { - 2} \right)}^2}} }} = \frac{6}{{2\sqrt 5 }} = \frac{{3\sqrt 5 }}{5}\).

b) Chọn điểm \(M\left( {0; - \frac{{35}}{3};0} \right)\) nằm trên mặt phẳng \(\left( R \right)\).

Khoảng cách giữa hai mặt phẳng song song \(\left( R \right)\) và \(\left( S \right)\), chính là khoảng cách từ \(M\left( {0; - \frac{{35}}{3};0} \right)\) đến \(\left( S \right)\), bằng:

\(d\left( {\left( R \right),\left( S \right)} \right) = d\left( {M,\left( S \right)} \right) = \frac{{\left| {16.0 + 12.\frac{{ - 35}}{3} - 2} \right|}}{{\sqrt {{{16}^2} + {{12}^2}} }} = \frac{{71}}{{10}}\)

(Trả lời bởi datcoder)
Thảo luận (1)

Vận dụng 6 (SGK Chân trời sáng tạo - Tập 2 - Trang 42)

Hướng dẫn giải

Hình vuông \(ABCD\) có cạnh \(a\sqrt 2 \), nên đường chéo có độ dài \(\sqrt {{{\left( {a\sqrt 2 } \right)}^2} + {{\left( {a\sqrt 2 } \right)}^2}}  = 2a\). Suy ra \(OA = OB = OC = \frac{{2a}}{2} = a\).

Chiều cao của hình chóp đều là \(2a\), nên \(SO = 2a\)

Điểm \(A\) nằm trên trục \(Ox\), \(OA = a\) và \({x_A} < 0\) nên ta có \(A\left( { - a;0;0} \right)\).

Điểm \(B\) nằm trên trục \(Oy\), \(OB = a\) và \({y_B} > 0\) nên ta có \(B\left( {0;a;0} \right)\).

Điểm \(C\) nằm trên trục \(Ox\), \(OC = a\) và \({x_C} > 0\) nên ta có \(C\left( {a;0;0} \right)\).

Điểm \(S\) nằm trên trục \(Oz\), \(OS = 2a\) và \({z_S} > 0\) nên ta có \(S\left( {0;0;2a} \right)\).

Mặt phẳng \(\left( {SAB} \right)\) đi qua \(A\left( { - a;0;0} \right)\), \(B\left( {0;a;0} \right)\), \(S\left( {0;0;2a} \right)\) nên có phương trình là \(\frac{x}{{ - a}} + \frac{y}{a} + \frac{z}{{2a}} = 1 \Leftrightarrow  - 2x + 2y + z = 2a \Leftrightarrow  - 2x + 2y + z - 2a = 0\).

Khoảng cách từ \(C\left( {a;0;0} \right)\) đến mặt phẳng \(\left( {SAB} \right)\) là:

\(d\left( {C,\left( {SAB} \right)} \right) = \frac{{\left| { - 2.a + 2.0 + 0 - 2a} \right|}}{{\sqrt {{{\left( { - 2} \right)}^2} + {2^2} + {1^2}} }} = \frac{{4a}}{3}\)

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 1 (SGK Chân trời sáng tạo - Tập 2 - Trang 42)

Hướng dẫn giải

a) Phương trình mặt phẳng đi qua điểm \(A\left( {2;0;0} \right)\) và nhận \(\vec n = \left( {2;1; - 1} \right)\) làm vectơ pháp tuyến là \(2\left( {x - 2} \right) + 1\left( {y - 0} \right) - 1\left( {z - 0} \right) = 0 \Leftrightarrow 2x + y - z - 4 = 0.\)

b) Mặt phẳng \(\left( P \right)\) đi qua điểm \(B\left( {1;2;3} \right)\) và song song với giá của mỗi vectơ \(\vec u = \left( {1;2;3} \right)\) và \(\vec v = \left( { - 2;0;1} \right)\). Do \(\left( P \right)\) song song với giá của \(\vec u\) và \(\vec v\) nên \(\vec u\) và \(\vec v\) là một cặp vectơ chỉ phương của \(\left( P \right)\). Do đó, một vectơ pháp tuyến của \(\left( P \right)\) là:

\(\vec n = \left[ {\vec u,\vec v} \right] = \left( {2.1 - 3.0;3.\left( { - 2} \right) - 1.1;1.0 - 2.\left( { - 2} \right)} \right) = \left( {2; - 7;4} \right).\)

Phương trình mặt phẳng \(\left( P \right)\) đi qua \(B\left( {1;2;3} \right)\) và có một vectơ pháp tuyến là \(\vec n = \left( {2; - 7;4} \right)\) là \(2\left( {x - 1} \right) - 7\left( {y - 2} \right) + 4\left( {z - 3} \right) = 0 \Leftrightarrow 2x - 7y + 4z = 0.\)

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 2 (SGK Chân trời sáng tạo - Tập 2 - Trang 42)

Hướng dẫn giải

Mặt phẳng \(\left( {Oxy} \right)\) có một vectơ pháp tuyến là \(\vec k = \left( {0;0;1} \right)\) nên phương trình mặt phẳng \(\left( {Oxy} \right)\) là \(0\left( {x - 0} \right) + 0\left( {y - 0} \right) + 1\left( {z - 0} \right) = 0 \Leftrightarrow z = 0\).

Mặt phẳng \(\left( {Oyz} \right)\) có một vectơ pháp tuyến là \(\vec i = \left( {1;0;0} \right)\) nên phương trình mặt phẳng \(\left( {Oyz} \right)\) là \(1\left( {x - 0} \right) + 0\left( {y - 0} \right) + 0\left( {z - 0} \right) = 0 \Leftrightarrow x = 0\).

Mặt phẳng \(\left( {Oxz} \right)\) có một vectơ pháp tuyến là \(\vec j = \left( {0;1;0} \right)\) nên phương trình mặt phẳng \(\left( {Oxz} \right)\) là \(0\left( {x - 0} \right) + 1\left( {y - 0} \right) + 0\left( {z - 0} \right) = 0 \Leftrightarrow y = 0\)

b) Gọi \(\left( P \right)\), \(\left( Q \right)\), \(\left( R \right)\) đi qua \(A\left( { - 1;9;8} \right)\) và lần lượt song song với các mặt phẳng toạ độ \(\left( {Oxy} \right)\), \(\left( {Oyz} \right)\), \(\left( {Oxz} \right)\).

Mặt phẳng \(\left( P \right)\) song song với \(\left( {Oxy} \right)\), nên \(\left( P \right)\) có một vectơ pháp tuyến là \(\vec k = \left( {0;0;1} \right)\). Phương trình mặt phẳng \(\left( P \right)\) là \(0\left( {x + 1} \right) + 0\left( {y - 9} \right) + 1\left( {z - 8} \right) = 0 \Leftrightarrow z - 8 = 0\)

Mặt phẳng \(\left( Q \right)\) song song với \(\left( {Oyz} \right)\), nên \(\left( Q \right)\) có một vectơ pháp tuyến là \(\vec i = \left( {1;0;0} \right)\). Phương trình mặt phẳng \(\left( Q \right)\) là \(1\left( {x + 1} \right) + 0\left( {y - 9} \right) + 0\left( {z - 8} \right) = 0 \Leftrightarrow x + 1 = 0\)

Mặt phẳng \(\left( R \right)\) song song với \(\left( {Oxy} \right)\), nên \(\left( R \right)\) có một vectơ pháp tuyến là \(\vec j = \left( {0;1;0} \right)\). Phương trình mặt phẳng \(\left( R \right)\) là \(0\left( {x + 1} \right) + 1\left( {y - 9} \right) + 0\left( {z - 8} \right) = 0 \Leftrightarrow y - 9 = 0\)

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 3 (SGK Chân trời sáng tạo - Tập 2 - Trang 42)

Hướng dẫn giải

a) Mặt phẳng \(\left( {ABC} \right)\) đi qua ba điểm \(A\left( {4;0;2} \right)\), \(B\left( {0;5;1} \right)\), \(C\left( {4; - 1;3} \right)\) nên sẽ nhận \(\overrightarrow {AB} \left( { - 4;5; - 1} \right)\) và \(\overrightarrow {AC} \left( {0; - 1;1} \right)\) làm một cặp vectơ chỉ phương. Suy ra một vectơ pháp tuyến của mặt phẳng \(\left( {ABC} \right)\) là

\(\overrightarrow {{n_{\left( {ABC} \right)}}}  = \left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {5.1 - \left( { - 1} \right).\left( { - 1} \right);\left( { - 1} \right).0 - \left( { - 4} \right).1;\left( { - 4} \right).\left( { - 1} \right) - 5.0} \right) = \left( {4;4;4} \right).\)

Vậy phương trình mặt phẳng \(\left( {ABC} \right)\) là

\(4\left( {x - 4} \right) + 4\left( {y - 0} \right) + 4\left( {z - 2} \right) = 0 \Leftrightarrow x + y + z - 6 = 0\)

Mặt phẳng \(\left( {ABD} \right)\) đi qua ba điểm \(A\left( {4;0;2} \right)\), \(B\left( {0;5;1} \right)\), \(D\left( {3; - 1;5} \right)\) nên sẽ nhận \(\overrightarrow {AB} \left( { - 4;5; - 1} \right)\) và \(\overrightarrow {AD} \left( { - 1; - 1;3} \right)\) làm một cặp vectơ chỉ phương. Suy ra một vectơ pháp tuyến của mặt phẳng \(\left( {ABD} \right)\) là

\(\overrightarrow {{n_{\left( {ABD} \right)}}}  = \left[ {\overrightarrow {AB} ,\overrightarrow {AD} } \right] = \left( {5.3 - \left( { - 1} \right).\left( { - 1} \right);\left( { - 1} \right).\left( { - 1} \right) - \left( { - 4} \right).3;\left( { - 4} \right).\left( { - 1} \right) - 5.\left( { - 1} \right)} \right) = \left( {14;13;9} \right)\)

Vậy phương trình mặt phẳng \(\left( {ABD} \right)\) là:

\(14\left( {x - 4} \right) + 13\left( {y - 0} \right) + 9\left( {z - 2} \right) = 0 \Leftrightarrow 14x + 13y + 9z - 74 = 0.\)

b) Mặt phẳng \(\left( P \right)\) đi qua cạnh \(BC\) và song song với cạnh \(AD\), và do \(ABCD\) là tứ diện nên \(\overrightarrow {BC} \left( {4; - 6;2} \right)\) và \(\overrightarrow {AD} \left( { - 1; - 1;3} \right)\) là một cặp vectơ chỉ phương của \(\left( P \right)\). Suy ra một vectơ pháp tuyến của mặt phẳng \(\left( P \right)\) là

\(\overrightarrow {{n_{\left( P \right)}}}  = \left[ {\overrightarrow {BC} ,\overrightarrow {AD} } \right] = \left( {\left( { - 6} \right).3 - 2.\left( { - 1} \right);2.\left( { - 1} \right) - 4.3;4.\left( { - 1} \right) - \left( { - 6} \right).\left( { - 1} \right)} \right) = \left( { - 16; - 14; - 10} \right)\)

Vậy phương trình mặt phẳng \(\left( P \right)\) là

\( - 16\left( {x - 0} \right) - 14\left( {y - 5} \right) - 10\left( {z - 1} \right) = 0 \Leftrightarrow 8x + 7y + 5z - 40 = 0.\)

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 4 (SGK Chân trời sáng tạo - Tập 2 - Trang 42)

Hướng dẫn giải

Một vectơ pháp tuyến của mặt phẳng \(\left( P \right)\) là \(\vec n = \left( {3; - 5;4} \right).\)

Do \(\left( P \right)\parallel \left( Q \right)\) nên vectơ pháp tuyến của mặt phẳng \(\left( P \right)\) cũng chính là vectơ pháp tuyến của mặt phẳng \(\left( Q \right)\). Suy ra một vectơ pháp tuyến của mặt phẳng \(\left( Q \right)\) là \(\vec n = \left( {3; - 5;4} \right).\)

Phương trình mặt phẳng \(\left( Q \right)\) đi qua điểm \(C\left( {1; - 5;0} \right)\) và có một vectơ pháp tuyến \(\vec n = \left( {3; - 5;4} \right)\) là \(3\left( {x - 1} \right) - 5\left( {y + 5} \right) + 4\left( {z - 0} \right) = 0 \Leftrightarrow 3x - 5y + 4z - 28 = 0.\)

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 5 (SGK Chân trời sáng tạo - Tập 2 - Trang 42)

Hướng dẫn giải

Mặt phẳng \(\left( \alpha  \right)\) đi qua \(A\left( {1;0;1} \right)\), \(B\left( {5;2;3} \right)\) nên có một vectơ chỉ phương là \(\overrightarrow {AB} \left( {4;2;2} \right).\)

Mặt phẳng \(\left( \alpha  \right)\) vuông góc với mặt phẳng \(\left( \beta  \right)\), nên vectơ pháp tuyến \(\vec n\left( {2; - 1;1} \right)\) của mặt phẳng \(\left( \beta  \right)\) là một vectơ chỉ phương của mặt phẳng \(\left( \alpha  \right).\)

Như vậy \(\left( \alpha  \right)\) có một cặp vectơ chỉ phương là \(\overrightarrow {AB} \left( {4;2;2} \right)\) và \(\vec n\left( {2; - 1;1} \right)\). Suy ra một vectơ pháp tuyến của mặt phẳng \(\left( \alpha  \right)\) là

\(\overrightarrow {{n_{\left( \alpha  \right)}}}  = \left[ {\overrightarrow {AB} ,\vec n} \right] = \left( {2.1 - 2.\left( { - 1} \right);2.2 - 4.1;4.\left( { - 1} \right) - 2.2} \right) = \left( {4;0; - 8} \right)\).

Vậy phương trình mặt phẳng \(\left( \alpha  \right)\) là

\(4\left( {x - 1} \right) + 0\left( {y - 0} \right) - 8\left( {z - 1} \right) = 0 \Leftrightarrow x - 2z + 1 = 0.\)

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 6 (SGK Chân trời sáng tạo - Tập 2 - Trang 42)

Hướng dẫn giải

Mặt phẳng \(\left( R \right)\) vuông góc với mặt phẳng \(\left( P \right)\) nên vectơ pháp tuyến \(\overrightarrow {{n_{\left( P \right)}}}  = \left( {4; - 2;6} \right)\) của \(\left( P \right)\) là vectơ chỉ phương của \(\left( R \right).\)

Mặt phẳng \(\left( R \right)\) vuông góc với mặt phẳng \(\left( Q \right)\) nên vectơ pháp tuyến \(\overrightarrow {{n_{\left( Q \right)}}}  = \left( {2;2;2} \right)\) của \(\left( Q \right)\) là một vectơ chỉ phương của \(\left( R \right).\)

Như vậy \(\left( R \right)\) có một cặp vectơ chỉ phương là \(\overrightarrow {{n_{\left( P \right)}}}  = \left( {4; - 2;6} \right)\) và \(\overrightarrow {{n_{\left( Q \right)}}}  = \left( {2;2;2} \right)\), suy ra một vectơ pháp tuyến của \(\left( R \right)\) là

\(\overrightarrow {{n_{\left( R \right)}}}  = \left[ {\overrightarrow {{n_{\left( P \right)}}} ,\overrightarrow {{n_{\left( Q \right)}}} } \right] = \left( {\left( { - 2} \right).2 - 6.2;6.2 - 4.2;4.2 - \left( { - 2} \right).2} \right) = \left( { - 16;4;12} \right)\)

Vậy phương trình mặt phẳng \(\left( R \right)\) là

\( - 16\left( {x - 1} \right) + 4\left( {y - 2} \right) + 12\left( {z + 1} \right) = 0 \Leftrightarrow  - 4x + y + 3z + 5 = 0.\)

(Trả lời bởi datcoder)
Thảo luận (1)

Bài tập 7 (SGK Chân trời sáng tạo - Tập 2 - Trang 43)

Hướng dẫn giải

Khoảng cách từ gốc toạ độ đến mặt phẳng \(\left( P \right)\) là:

\(d\left( {O,\left( P \right)} \right) = \frac{{\left| {2.0 - 2.0 - 0 + 3} \right|}}{{\sqrt {{2^2} + {{\left( { - 2} \right)}^2} + {{\left( { - 1} \right)}^2}} }} = 1.\)

Khoảng cách từ điểm \(M\left( {1; - 2;13} \right)\) đến mặt phẳng \(\left( P \right)\) là:

\(d\left( {M,\left( P \right)} \right) = \frac{{\left| {2.1 - 2.\left( { - 2} \right) - 13 + 3} \right|}}{{\sqrt {{2^2} + {{\left( { - 2} \right)}^2} + {{\left( { - 1} \right)}^2}} }} = \frac{4}{3}.\)

(Trả lời bởi datcoder)
Thảo luận (1)