a) Chiều cao của hình chóp \(O.MNP\) chính là khoảng cách từ điểm
b) \(O\) tới mặt phẳng \(\left( {MNP} \right)\).
Mặt phẳng \(\left( {MNP} \right)\) đi qua ba điểm \(M\left( {2;1;2} \right)\), \(N\left( {3;3;3} \right)\), \(P\left( {4;5;6} \right)\) nên có một cặp vectơ chỉ phương là \(\overrightarrow {MN} = \left( {1;2;1} \right)\) và \(\overrightarrow {MP} = \left( {2;4;4} \right)\).
Suy ra một vectơ pháp tuyến của mặt phẳng \(\left( {MNP} \right)\) là:
\(\vec n = \left[ {\overrightarrow {MN} ,\overrightarrow {MP} } \right] = \left( {2.4 - 1.4;1.2 - 1.4;1.4 - 2.2} \right) = \left( {4; - 2;0} \right)\)
Mặt phẳng \(\left( {MNP} \right)\) đi qua \(M\left( {2;1;2} \right)\) và có một vectơ pháp tuyến \(\vec n = \left( {4; - 2;0} \right)\) nên có phương trình là \(4\left( {x - 2} \right) - 2\left( {y - 1} \right) + 0\left( {z - 2} \right) = 0 \Leftrightarrow 4x - 2y - 6 = 0\).
Khoảng cách từ điểm \(O\) tới mặt phẳng \(\left( {MNP} \right)\) là:
\(d\left( {O,\left( {MNP} \right)} \right) = \frac{{\left| {4.0 - 2.0 - 6} \right|}}{{\sqrt {{4^2} + {{\left( { - 2} \right)}^2}} }} = \frac{6}{{2\sqrt 5 }} = \frac{{3\sqrt 5 }}{5}\).
b) Chọn điểm \(M\left( {0; - \frac{{35}}{3};0} \right)\) nằm trên mặt phẳng \(\left( R \right)\).
Khoảng cách giữa hai mặt phẳng song song \(\left( R \right)\) và \(\left( S \right)\), chính là khoảng cách từ \(M\left( {0; - \frac{{35}}{3};0} \right)\) đến \(\left( S \right)\), bằng:
\(d\left( {\left( R \right),\left( S \right)} \right) = d\left( {M,\left( S \right)} \right) = \frac{{\left| {16.0 + 12.\frac{{ - 35}}{3} - 2} \right|}}{{\sqrt {{{16}^2} + {{12}^2}} }} = \frac{{71}}{{10}}\)