Chứng minh rằng hai mặt phẳng (Ozx) và (P): x + 2z – 3 = 0 vuông góc với nhau.
Chứng minh rằng hai mặt phẳng (Ozx) và (P): x + 2z – 3 = 0 vuông góc với nhau.
Chứng minh rằng khoảng cách từ điểm M(a; b; c) đến các mặt phẳng (Oyz), (Ozx), (Oxy) lần lượt bằng |a|, |b|, |c|.
Thảo luận (1)Hướng dẫn giải(Oyz): x = 0; (Ozx): y = 0; (Oxy): z = 0.
\(d\left( {{M_0};(Oyz)} \right) = \frac{{\left| {1.a + 0.b + 0.b + 0} \right|}}{{\sqrt {{1^2} + {0^2} + {0^2}} }} = \left| a \right|\);
\(d\left( {{M_0};(Ozx)} \right) = \frac{{\left| {0.a + 1.b + 0.b + 0} \right|}}{{\sqrt {{0^2} + {1^2} + {0^2}} }} = \left| b \right|\);
\(d\left( {{M_0};(Oxy)} \right) = \frac{{\left| {0.a + 0.b + 1.b + 0} \right|}}{{\sqrt {{0^2} + {0^2} + {1^2}} }} = \left| c \right|\).
(Trả lời bởi Nguyễn Quốc Đạt)
Lập phương trình mặt phẳng (P) trong mỗi trường hợp sau:
a) (P) đi qua điểm I(3; – 4; 1) và vuông góc với trục Ox;
b) (P) đi qua điểm K(– 2; 4; – 1) và song song với mặt phẳng (Ozx);
c) (P) đi qua điểm K(– 2; 4; – 1) và song song với mặt phẳng (Q): 3x + 7y + 10z + 1 = 0.
Thảo luận (1)Hướng dẫn giảia) \((P) \bot Ox \Rightarrow {\overrightarrow n _{(P)}} = (1;0;0)\)
Phương trình mặt phẳng (P) là: \(x - 3 = 0\)
b) \((P)//(Oxz) \Rightarrow (P) \bot Oy \Rightarrow {\overrightarrow n _{(P)}} = (0;1;0)\)
Phương trình mặt phẳng (P) là: \(y - 4 = 0\)
c) \((P)//(Q) \Rightarrow {\overrightarrow n _{(P)}} = {\overrightarrow n _{(Q)}} = (3;7;10)\)
Phương trình mặt phẳng (P) là: \(3(x + 2) + 7(y - 4) + 10(z + 1) = 0 \Leftrightarrow 3x + 7y + 10z - 12 = 0\)
(Trả lời bởi Nguyễn Quốc Đạt)
Cho m ≠ 0. Chứng minh rằng các mặt phẳng (P): x – m = 0, (Q): y – m = 0, (R): z – m = 0 lần lượt song song với các mặt phẳng (Oyz), (Ozx), (Oxy).
Thảo luận (1)Hướng dẫn giảiVecto pháp tuyến của các mặt phẳng (P), (Q), (R) là:
\(\overrightarrow {{n_P}} = (1;0;0)\), \(\overrightarrow {{n_Q}} = (0;1;0)\), \(\overrightarrow {{n_R}} = (0;0;1)\).
Vecto pháp tuyến của các mặt phẳng (Oyz): x = 0, (Ozx): y = 0, (Oxy): z = 0 là:
\(\overrightarrow i = (1;0;0)\), \(\overrightarrow j = (0;1;0)\), \(\overrightarrow k = (0;0;1)\).
Do \(\overrightarrow i = \overrightarrow {{n_P}} \) và \(m \ne 0\) nên (P) // (Oyz).
Do \(\overrightarrow j = \overrightarrow {{n_Q}} \) và \(m \ne 0\) nên (Q) // (Ozx).
Do \(\overrightarrow k = \overrightarrow {{n_R}} \) và \(m \ne 0\) nên (R) // (Oxy).
(Trả lời bởi Nguyễn Quốc Đạt)
a) Cho hai mặt phẳng (P1): x + 2y + 3z + 4 = 0, (P2): x + y – z + 5 = 0. Chứng minh rằng (P1) ⊥ (P2).
b) Cho mặt phẳng (P): x – 2y – 2z + 1 = 0 và điểm M(1; 1; – 6). Tính khoảng cách từ điểm M đến mặt phẳng (P).
Thảo luận (1)Hướng dẫn giảia) Ta có: \(\overrightarrow {{n_1}} = (1;2;3);\overrightarrow {{n_2}} = (1;1; - 1)\)
\(\overrightarrow {{n_1}} .\overrightarrow {{n_2}} = 1.1 + 2.1 + 3.( - 1) = 0 \Leftrightarrow \overrightarrow {{n_1}} \bot \overrightarrow {{n_2}} \)
Do đó: \(({P_1}) \bot ({P_2})\)
b) \(d(M;(P)) = \frac{{\left| {1.1 - 2.1 - 2.( - 6) + 1} \right|}}{{\sqrt {{1^2} + {{( - 2)}^2} + {{( - 2)}^2}} }} = 4\)
(Trả lời bởi Nguyễn Quốc Đạt)
Lập phương trình mặt phẳng (P) đi qua điểm I(3; – 4; 5) và nhận \(\overrightarrow{n}=\left(2;7;-1\right)\) làm vectơ pháp tuyến.
Thảo luận (1)Hướng dẫn giảiPhương trình mặt phẳng (P) là: \(2(x - 3) + 7(y + 4) - (z - 5) = 0 \Leftrightarrow 2x + 7y - z + 27 = 0\)
(Trả lời bởi Nguyễn Quốc Đạt)
Hình 21 minh họa một khu nhà đang xây dựng được gắn hệ trục tọa độ Oxyz (đơn vị trên các trục là mét). Mỗi cột bê tông có dạng hình lăng trụ tứ giác đều và tâm của mặt đáy trên lần lượt là các điểm A(2; 1; 3), B(4; 3; 3), C(6; 3; 2,5), D(4; 0; 2,8).

a) Lập phương trình mặt phẳng (ABC).
b) Bốn điểm A, B, C, D có đồng phẳng hay không?
Thảo luận (1)Hướng dẫn giảia) Ta có: \(\overrightarrow {AB} = (2;2;0);\overrightarrow {AC} = (4;2; - 0,5)\).
Vecto pháp tuyến của mặt phẳng (ABC) là: \(\overrightarrow {{n_1}} = \left[ {\overrightarrow {AB} ;\overrightarrow {AC} } \right] = ( - 1;1; - 4)\).
Phương trình mặt phẳng (ABC) là: \( - 1(x - 2) + 1(y - 1) - 4(z - 3) = 0 \Leftrightarrow - x + y - 4z + 13 = 0\) (*)
b) Thay tọa độ điểm D(4;0;2,8) vào phương trình (*): \( - 1(4 - 2) + 1(0 - 1) - 4(2,8 - 3) = -2,2 \ne 0 \).
Suy ra D không thuộc mặt phẳng (ABC).
Vậy bốn điểm A, B, C, D không đồng phẳng.
(Trả lời bởi Nguyễn Quốc Đạt)
Trong không gian với hệ toạ độ Oxyz, cho hình chóp S.OBCD có đáy là hình chữ nhật và các điểm O(0; 0; 0), B(2; 0; 0), D(0; 3; 0), S(0; 0; 4) (Hình 19).

a) Tìm toạ độ điểm C.
b) Lập phương trình mặt phẳng (SBD).
c) Tính khoảng cách từ điểm C đến mặt phẳng (SBD).
Thảo luận (1)Hướng dẫn giảia) C(2;3;0).
b) \(\overrightarrow {SB} = (2;0; - 4);\overrightarrow {SD} = (0;3; - 4)\).
Vecto pháp tuyến của mặt phẳng (SBD) là: \(\overrightarrow n = \left[ {\overrightarrow {SB} ;\overrightarrow {SD} } \right] = (12;8;6) = 2(6;4;3)\).
Phương trình mặt phẳng (SBD) là: \(6x + 4y + 3z - 12 = 0\).
c) \(d(C;(SBD)) = \frac{{\left| {6.2 + 4.3 + 3.0 - 12} \right|}}{{\sqrt {{6^2} + {4^2} + {3^2}} }} = \frac{{12\sqrt {61} }}{{61}}\).
(Trả lời bởi Nguyễn Quốc Đạt)
Lập phương trình mặt phẳng (P) đi qua ba điểm A(1; 1; 1), B(0; 4; 0), C(2; 2; 0).
Thảo luận (1)Hướng dẫn giải(P) có cặp vecto chỉ phương là \(\overrightarrow {AB} = ( - 1;3; - 1),\overrightarrow {BC} = (2; - 2;0)\)
Vecto pháp tuyến của (P) là \(\overrightarrow n = \left[ {\overrightarrow {AB} ;\overrightarrow {BC} } \right] = \left( { - 2; - 2; - 4} \right) = - 2(1;1;2)\)
Phương trình mặt phẳng (P) là: \(x + (y - 4) + 2z = 0 \Leftrightarrow x + y + 2z - 4 = 0\)
(Trả lời bởi Nguyễn Quốc Đạt)
Cho mặt phẳng (P) có phương trình tổng quát là Ax + By + Cz + D = 0 với \(\overrightarrow{n}=\left(A;B;C\right)\) là vectơ pháp tuyến. Cho điểm M0(2; 3; 4). Gọi H(xH; yH; zH) là hình chiếu vuông góc của điểm M0 trên mặt phẳng (P) (Hình 16).

a) Tính tọa độ của \(\overrightarrow{HM_0}\) theo theo xH, yH, zH.
b) Nêu nhận xét về phương của hai vectơ \(\overrightarrow{n}=\left(A;B;C\right),\overrightarrow{HM_0}\).
Từ đó hãy suy ra rằng \(\left|\overrightarrow{n}.\overrightarrow{HM_0}\right|=\left|\overrightarrow{n}\right|.\left|\overrightarrow{HM_0}\right|=\left|A.2+B.3+C.4+D\right|.\)
c) Tính các độ dài \(\left|\overrightarrow{n}\right|,\left|\overrightarrow{HM_0}\right|\) theo A, B, C, D. Từ đó. hãy nêu công thức tính khoảng cách từ điểm M0(2; 3; 4) đến mặt phẳng (P).
Thảo luận (1)Hướng dẫn giảia) \(\overrightarrow {H{M_0}} = (2 - {x_H};3 - {y_H};4 - {z_H})\).
b) Vì H là hình chiếu vuông góc của \({M_0}\) trên mặt phẳng (P) nên 2 vecto \(\overrightarrow n \) và \(\overrightarrow {H{M_0}} \) cùng phương.
Ta có: \(\left| {\overrightarrow n .\overrightarrow {H{M_0}} } \right| = \left| {\overrightarrow n } \right|.\left| {\overrightarrow {H{M_0}} } \right|.\left| {\cos \left( {\overrightarrow n ;\overrightarrow {H{M_0}} } \right)} \right| = \left| {\overrightarrow n } \right|.\left| {\overrightarrow {H{M_0}} } \right|\).
Lại có: \(\overrightarrow n .\overrightarrow {H{M_0}} = A(2 - {x_H}) + B(3 - {y_H}) + C(4 - {z_H}) \)
\(= A.2 + B.3 + C.4 + ( - A{x_H} - B{y_H} - C{z_H})\)
\(= A.2 + B.3 + C.4 + D\).
\( \Rightarrow \left| {\overrightarrow n .\overrightarrow {H{M_0}} } \right| = \left| {A.2 + B.3 + C.4 + D} \right|\).
Vậy \(\left| {\overrightarrow n .\overrightarrow {H{M_0}} } \right| = \left| {\overrightarrow n } \right|.\left| {\overrightarrow {H{M_0}} } \right| = \left| {A.2 + B.3 + C.4 + D} \right|\).
c) \(\left| {\overrightarrow n } \right| = \sqrt {{A^2} + {B^2} + {C^2}} \)
\(\left| {\overrightarrow {H{M_0}} } \right| = \frac{{\left| {\overrightarrow n .\overrightarrow {H{M_0}} } \right|}}{{\left| {\overrightarrow n } \right|}} = \frac{{\left| {A.2 + B.3 + C.4 + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\).
Vậy công thức tính khoảng cách từ điểm \({M_0}(2;3;4)\) đến mặt phẳng (P) là \(d({M_0};(P)) = \frac{{\left| {A.2 + B.3 + C.4 + D} \right|}}{{\sqrt {{A^2} + {B^2} + {C^2}} }}\).
(Trả lời bởi Nguyễn Quốc Đạt)