Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho 3 số thực x,y,z thỏa mãn \(x+y=\left(\sqrt{x}+\sqrt{y}-\sqrt{z}\right)^2\)
Chứng minh: \(\dfrac{x+\left(\sqrt{x}-\sqrt{z}\right)^2}{y+\left(\sqrt{y}-\sqrt{z}\right)^2}=\dfrac{\sqrt{x}-\sqrt{z}}{\sqrt{y}-\sqrt{z}}\)
Cho x, y, z > 0 và khác nhau đôi một. Chứng minh rằng giá trị của biểu thức P không phụ thuộc và giá trị của các biến
\(P=\frac{x}{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{z}\right)}+\frac{y}{\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{y}-\sqrt{x}\right)}+\frac{z}{\left(\sqrt{z}-\sqrt{x}\right)\left(\sqrt{z}-\sqrt{y}\right)}\)
1. Rút gọn: \(\left(4+\sqrt{15}\right).\left(\sqrt{10}-\sqrt{6}\right).\left(\sqrt{4-\sqrt{15}}\right)\)
2. Cho 3 số dương thỏa x + y + z = 2
Tìm GTNN của A = \(\frac{x^2}{y+z}+\frac{y^2}{x+z}+\frac{z^2}{x+y}\)
cho x,y,z là các số thực thỏa mãn \(\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{z}+\sqrt{x}\right)=1\)
Tính giá trị biểu thức P=\(\dfrac{\sqrt{y}-\sqrt{z}}{x\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+1+\sqrt{xyz}}+\dfrac{\sqrt{z}-\sqrt{x}}{y\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+1+\sqrt{xyz}}+\dfrac{\sqrt{x}-\sqrt{y}}{z\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+1+\sqrt{xyz}}\)
Cho x,y,z>0 thỏa mãn xyz=1. Tìm min \(P=\dfrac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\dfrac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\dfrac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)
Cho 3 số dương x,y,z. CMR:\(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}>=3\left(\dfrac{1}{\sqrt{x}+2\sqrt{y}}+\dfrac{1}{\sqrt{y}+2\sqrt{z}}+\dfrac{1}{\sqrt{z}+2\sqrt{x}}\right)\)
Cho x, y, z > 0 và xy + yz + zx = a.
Chứng minh: \(x\sqrt{\frac{\left(a+y^2\right)\left(a+z^2\right)}{a+x^2}}+y\sqrt{\frac{\left(a+z^2\right)\left(a+x^2\right)}{a+y^2}}+z\sqrt{\frac{\left(a+x^2\right)\left(a+y^2\right)}{a+z^2}}=2a\)
Cho x, y, z là các số thực dương thỏa mãn \(\sqrt{xy}+\sqrt{yz}+\sqrt{zx}=1\)
Tính giá trị của biểu thức: \(P=\sqrt{\left(1+x\right)\left(1+y\right)\left(1+z\right)}\left(\frac{\sqrt{x}}{1+x}+\frac{\sqrt{y}}{1+y}+\frac{\sqrt{z}}{1+z}\right)\)
Cho 3 số dương x,y,z thỏa mãn \(x\sqrt{x}+y\sqrt{y}+z\sqrt{z}=3\sqrt{xyz}\). Tính A=\(\left(1+\dfrac{\sqrt{x}}{\sqrt{y}}\right)\left(1+\dfrac{\sqrt{y}}{\sqrt{z}}\right)\left(1+\dfrac{\sqrt{z}}{\sqrt{x}}\right)\)