\(2\ge a^2+b^2\ge2ab\Rightarrow ab\le1\)
Ta có:
\(\frac{1}{1+a^2}+\frac{1}{1+b^2}-\frac{2}{1+ab}=\frac{a^2+b^2+2}{a^2b^2+a^2+b^2+1}-\frac{2}{1+ab}\)
\(=\frac{\left(ab+1\right)\left(a^2+b^2+2\right)-2a^2b^2-a^2-b^2-2}{\left(1+ab\right)\left(1+a^2\right)\left(1+b^2\right)}=\frac{ab\left(a^2+b^2\right)-2a^2b^2+2ab-a^2-b^2}{\left(1+ab\right)\left(1+a^2\right)\left(1+b^2\right)}\)
\(=\frac{ab\left(a^2+b^2-2ab\right)-\left(a-b\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}=\frac{\left(ab-1\right)\left(a-b\right)^2}{\left(1+a^2\right)\left(1+b^2\right)\left(1+ab\right)}\le0;\forall ab\le1\)
\(\Rightarrow\frac{1}{1+a^2}+\frac{1}{1+b^2}\le\frac{2}{1+ab}\)
Dấu "=" xảy ra khi \(a=b\)