Lời giải:
Ta thấy đây là một hệ đối xứng. Nếu hệ có nghiệm \((x,y)=(m,n)\) thì cũng có nghiệm \((x,y)=(n,m)\)
Do đó để hệ có duy nhất một nghiệm thì trước nhất \(x=y\)
Thay vào PT ban đầu:
\((x+1)^2=x+a\)
\(\Leftrightarrow x^2+x+(1-a)=0\) (*)
Để tồn tại duy nhất một bộ nghiệm thì cần tồn tại duy nhất một giá trị $x$
Do đó (*) phải có nghiệm duy nhất
\(\Rightarrow \Delta=1-4(1-a)=0\Leftrightarrow a=\frac{3}{4}\)