tìm m ∈ Z để hệ có nghiệm duy nhất là nghiệm duy nhất là nguyên
a)\(\left\{{}\begin{matrix}\left(m+1\right)x-2y=m-1\\m^2x-y=m^2+2m\end{matrix}\right.\)
b)\(\left\{{}\begin{matrix}mx-y=1\\x+4\left(m+1\right)y=4m\end{matrix}\right.\)
c)\(\left\{{}\begin{matrix}mx+y-3=3\\x+my-2m+1=0\end{matrix}\right.\)
1. giải hệ phương trình \(\left\{{}\begin{matrix}\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=2\\\dfrac{2}{xy}-\dfrac{1}{z^2}=4\end{matrix}\right.\)
2. cho hpt \(\left\{{}\begin{matrix}2x+3y=3a\\ax-y=2\end{matrix}\right.\) (a là tham số) tìm nghiệm duy nhất của hpt thỏa mãn \(2x+y^2=1\)
3. cho hpt \(\left\{{}\begin{matrix}2x+y=m\\3x-2y=5\end{matrix}\right.\) tìm nghiệm duy nhất của hpt thỏa mãn x<0; y<0
4. cho hpt \(\left\{{}\begin{matrix}y-16x=m\\m^2-y=-4\end{matrix}\right.\) tìm m để hpt có nghiệm nguyên
\(\left\{{}\begin{matrix}\left(m+1\right)x+my=2m-1\\mx-y=m^2-2\end{matrix}\right.\)
Chứng minh rằng với mọi m hệ luôn có nghiệm duy nhất (x ; y). Tìm m sao cho P=xy+x+2y đạt giá trị lớn nhất
cho hpt sau:\(\left\{{}\begin{matrix}3x+\left(m-1\right)y=12\\\left(m-1\right)x+12y=24\end{matrix}\right.\)
a.tìm m để hệ pt có 1 nghiệm duy nhất thỏa mãn x + y = -1
b.tìm m nguyên để có nghiệm duy nhất là nghiệm nguyên
XĐ a để hệ PT có nghiệm duy nhất: \(\left\{{}\begin{matrix}\left(x+1\right)^2=y+a\\\left(y+1\right)^2=x+a\end{matrix}\right.\)
Định k để hệ phương trình \(\left\{{}\begin{matrix}\left(k+1\right)x+ky=2k-1\\kx-y=k^2-2\end{matrix}\right.\)
(k là tham số) có nghiệm duy nhất (x;y) thỏa mãn P=xy đạt giá trị lớn nhất
Tìm điều kiện của m để hệ PT \(\left\{{}\begin{matrix}mx+2my=m+1\\x+\left(m+1\right)y=2\end{matrix}\right.\)
có nghiệm duy nhất trong trường hợp đó M(x;y) luôn thuộc 1 đường thẳng cố định
cho hệ phương trình \(\left\{{}\begin{matrix}\left(m+1\right)x-\left(m+1\right)y=4m\\x+\left(m-2\right)y=2\end{matrix}\right.\) với m ∈ R
a) giải hệ biết m= -3
b) tìm điều kiện của m để phương trình có nghiệm duy nhất. Tìm nghiệm đó
Giải hệ PT: \(\left\{{}\begin{matrix}x+y+x^2+y^2=8\\xy\left(x+1\right)\left(y+1\right)=12\end{matrix}\right.\)