tan(820)=tan(810+10)
=tan(720+90+10)
=tan(90+10)<0
cos(1000)>0
sin(-59/4pi)=sin(-60/4pi+pi/4)=sin(-15pi+pi/4)
=sin(-pi+pi/4)
=sin(-3/4pi)<0
tan(820)=tan(810+10)
=tan(720+90+10)
=tan(90+10)<0
cos(1000)>0
sin(-59/4pi)=sin(-60/4pi+pi/4)=sin(-15pi+pi/4)
=sin(-pi+pi/4)
=sin(-3/4pi)<0
Diễn tả giá trị lượng giác của góc sau bằng giá trị lượng giác của góc x
\(cos^{2015}\left(x-\dfrac{11\pi}{2}\right);cos^{2019}\left(x+\dfrac{7\pi}{2}\right);sin^{2019}\left(\dfrac{5\pi}{2}-x\right);cot^2\left(x-\dfrac{\pi}{2}\right)\)
Tập xác định của hàm số
y=\(\dfrac{cot\left(x-\dfrac{\pi}{4}\right)}{sin^4x-cos^4x}\)
Tìm tập hợp xác định của các hàm số :
a) \(y=\dfrac{1+\cos x}{\sin x}\)
b) \(y=\sqrt{\dfrac{1+\cos x}{1-\cos x}}\)
c) \(y=\tan\left(x-\dfrac{\pi}{3}\right)\)
d) \(y=\cot\left(x+\dfrac{\pi}{6}\right)\)
Tìm giá trị lớn nhất và giá trị nhỏ nhất của các hàm số :
a) \(y=3-2\left|\sin x\right|\)
b) \(y=\cos x+\cos\left(x-\dfrac{\pi}{3}\right)\)
c) \(y=\cos^2x+2\cos2x\)
d) \(y=\sqrt{5-2\cos^2x\sin^2x}\)
Xác định tính chẵn lẻ của các hàm số :
a) \(y=\dfrac{\cos2x}{x}\)
b) \(y=x-\sin x\)
c) \(y=\sqrt{1-\cos x}\)
d) \(y=1+\cos x\sin\left(\dfrac{3\pi}{2}-2x\right)\)
tìm tập xác định của mỗi hàm số sau : a) y = \(\sqrt{\frac{1-\sin x}{1+\cos x}}\) ; b) y = \(\tan\left(2x+\frac{\pi}{3}\right)\).
Hãy xác định các giá trị của x trên đoạn \(\left[-\pi;\dfrac{3\pi}{2}\right]\) để hàm số \(y=\tan x\) :
a) Nhận giá trị bằng 0
b) Nhận giá trị bằng 1
c) Nhận giá trị dương
d) Nhận giá trị âm
tìm tập xác định của mỗi hàm số sau : a) y = \(\sqrt{\frac{1-\sin x}{1+\cos x}}\) ; b) y = \(\tan\) \(\left(2x+\frac{\pi}{3}\right)\).
tìm tập xác định của mỗi hàm số sau :
a) y = \(\sqrt{3-\sin x}\) ; b) y = \(\frac{1-\cos x}{\sin x}\) ; c) y = \(\sqrt{\frac{1-\sin x}{1+\cos x}}\) ; d) y = \(\tan\)(2x + \(\frac{\pi}{3}\)) .