\(cos^{2015}\left(x-\frac{11\pi}{2}\right)\)
\(=cos^{2015}\left(x+\frac{\pi}{2}-\frac{12\pi}{2}\right)=cos^{2015}\left(x+\frac{\pi}{2}-6\pi\right)\)
\(=cos^{2015}\left(x+\frac{\pi}{2}\right)=-\sin^{2015}x\)
\(cos^{2019}\left(x+\frac{7\pi}{2}\right)\)
\(=cos^{2019}\left(x-\frac{\pi}{2}+4\pi\right)=cos^{2019}\left(x-\frac{\pi}{2}\right)\)
\(=cos^{2019}\left(\frac{\pi}{2}-x\right)=\sin^{2019}x\)
\(\sin^{2019}\left(\frac52\pi-x\right)=\sin^{2019}\left(2\pi+\frac{\pi}{2}-x\right)\)
\(=\sin^{2019}\left(\frac{\pi}{2}-x\right)=cos^{2019}x\)
\(\cot^2\left(x-\frac{\pi}{2}\right)=\frac{1}{\sin^2\left(x-\frac{\pi}{2}\right)}-1=\frac{1}{\sin^2\left(\frac{\pi}{2}-x\right)}-1=\frac{1}{cos^2x}-1\)
\(=\tan^2x\)