tìm tập xác định của mỗi hàm số sau : a) y = \(\sqrt{\frac{1-\sin x}{1+\cos x}}\) ; b) y = \(\tan\left(2x+\frac{\pi}{3}\right)\).
tìm tập xác định của mỗi hàm số sau :
a) y = \(\sqrt{3-\sin x}\) ; b) y = \(\frac{1-\cos x}{\sin x}\) ; c) y = \(\sqrt{\frac{1-\sin x}{1+\cos x}}\) ; d) y = \(\tan\)(2x + \(\frac{\pi}{3}\)) .
tìm tập xác định của mỗi hàm số sau :
a) y = \(\sqrt{3-\sin x}\) ; b) y = \(\frac{1-\cos x}{\sin x}\) ; c) y = \(\sqrt{\frac{1-\sin x}{1+\cos x}}\) ; d) y = \(\tan\)(2x + \(\frac{\pi}{3}\))
cho các hàm số sau : a) y = \(-\sin^2x\) ; b) y = \(3\tan^2x+1\) ; c) y = \(\sin x\cos x\) ; d) y = \(\sin x\cos x+\frac{\sqrt{3}}{2}\cos2x\)
chứng minh rằng mỗi hàm số trên đều có tính chất : f\(\left(x+k\pi\right)\)=f(x) với k thuộc Z , x thuộc tập xác định của hàm số f .
cho các hàm số sau : a) y = \(-\sin^2x\) ; b) y = \(3\tan^2x+1\) ; c) y = \(\sin x\cos x\) ; d) y = \(\sin x\cos x+\frac{\sqrt{3}}{2}\cos2x\)
chứng minh rằng mỗi hàm số trên đều có tính chất : f\(\left(x+k\pi\right)\)=f(x) với k thuộc Z , x thuộc tập xác định của hàm số f .
cho các hàm số sau : a) y = \(-\sin^2x\) ; b) y = \(3\tan^2x+1\) ; c) y = \(\sin x\cos x\) ; d) y = \(\sin x\cos x+\frac{\sqrt{3}}{2}\cos2x\)
chứng minh rằng mỗi hàm số trên đều có tính chất : f\(\left(x+k\pi\right)\)=f(x) với k thuộc Z , x thuộc tập xác định của hàm số f .
cho các hàm số sau : a) y = \(-\sin^2x\) ; b) y = \(3\tan^2x+1\) ; c) y = \(\sin x\cos x\) ; d) y = \(\sin x\cos x\)\(+\frac{\sqrt{3}}{2}\cos2x\)
chứng minh rằng mỗi hàm số trên đều có tính chất : f\(\left(x+k\pi\right)\)=f(x) với k thuộc Z , x thuộc tập xác định của hàm số f .
Tìm tập hợp xác định của các hàm số :
a) \(y=\dfrac{1+\cos x}{\sin x}\)
b) \(y=\sqrt{\dfrac{1+\cos x}{1-\cos x}}\)
c) \(y=\tan\left(x-\dfrac{\pi}{3}\right)\)
d) \(y=\cot\left(x+\dfrac{\pi}{6}\right)\)
1. Tìm tập xác đinh của các hàm số sau
a. y = \(\sqrt{\frac{1-\sin x}{1+\cos x}}\)
b. y = \(\tan\left(2x+\frac{\pi}{3}\right)\)
2. Xét tính chẵn, lẻ của các hàm số sau
a. \(y=\sin x-\cos x\)
b. \(y=\sin x\times\cos^2x+\tan x\)