a) \(x^3-2x^2+x\)
\(=x\left(x^2-2x+1\right)\)
\(=x\left(x^2-x-x+1\right)\)
\(=x\left[\left(x^2-x\right)-\left(x-1\right)\right]\)
\(=x\left[x\left(x-1\right)-\left(x-1\right)\right]\)
\(=x\left(x-1\right)\left(x-1\right)\)
\(=x\left(x-1\right)^2\)
b) \(x^2-2x-15\)
\(=x^2-5x+3x-15\)
\(=\left(x^2-5x\right)+\left(3x-15\right)\)
\(=x\left(x-5\right)+3\left(x-5\right)\)
\(=\left(x-5\right)\left(x+3\right)\)
\(x^3-2x^2+x\)
\(=x\left(x^2-2x+1\right)\)
\(=x\left(x-1\right)^2\)
\(x^2-2x-15\)
\(=\left(x^2-5x\right)+\left(3x-15\right)\)
\(=\left(x-5\right)\left(x+3\right)\)
1,\(C_1:x^3-2x^2+x\)
\(=x\left(x^2-2x+1\right)\)
\(=x\left(x-1\right)^2\)
\(C_2:x^3-2x^2+x\)
\(=x^3-x^2-x^2+x\)
\(=x^2\left(x-1\right)-x\left(x-1\right)\)
\(=\left(x-1\right)\left(x^2-x\right)\)
\(=x\left(x-1\right)\left(x-1\right)\)
\(=x\left(x-1\right)^2\)
\(2,x^2-2x-15\)
\(=\left(x^2-2x+1\right)-16\)
\(=\left(x-1\right)^2-4^2\)
\(=\left(x-1-4\right)\left(x-1+4\right)\)
\(=\left(x-5\right)\left(x+3\right)\)
Cần C2 thì bảo mk
x3 - 2x2 + x = x (x2 - 2x + 1) = x (x - 1)2
x2 - 2x - 15 = (x2 - 2x +1) - 16 = (x - 1)2 - 42 = (x - 1 - 4)(x - 1 + 4) = (x - 5)(x + 3)
a, x3- 2x2+x
= x( x2+ 2x + 1)
= x(x+1)2
b, x2-2x-15
=x2+3x-5x-15
= x(x+3) - 5(x+3)
= (x+3)(x-5)
\(x^3-2x^2+x=x\left(x^2-2x.1+1\right)=x\left(x-1\right)^2\) \(x^2-2x-15=x^2-2x+1-16=\left(x-1\right)^2-4^2=\left(x-1+4\right)\left(x-1-4\right)=\left(x+3\right)\left(x-5\right)\)