Bài 1:
a) \(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)-3x^2=42\) (1)
\(\Leftrightarrow x^3+9x^2+27x+27-x\left(9x^2+6x+1\right)+8x^3+1-3x^2=42\)
\(\Leftrightarrow x^3+9x^2+27x+27-9x^3-6x^2-x+8x^3+1-3x^2=42\)
\(\Leftrightarrow26x+28=42\)
\(\Leftrightarrow26x=42-28\)
\(\Leftrightarrow26x=14\)
\(\Leftrightarrow x=\dfrac{7}{13}\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{\dfrac{7}{13}\right\}\)
1b) \(5x\left(x+3\right)^2-5\left(x+1\right)^3+15\left(x+2\right)\left(x-2\right)=5\Leftrightarrow5x\left(x^2+6x+9\right)-5\left(x^3+3x^2+3x+1\right)+15\left(x^2-4\right)=5\Leftrightarrow30x-65=5\Leftrightarrow30x=70\Leftrightarrow x=\dfrac{7}{3}\)
2) \(x^2\left(x+3\right)+y^2\left(y+5\right)-\left(x+y\right)\left(x^2-xy+y^2\right)=0\Leftrightarrow x^3+3x^2+y^3+5y^2-x^3-y^3=0\Leftrightarrow3x^2+5y^2=0\)Do \(3x^2\ge0\) và \(5y^2\ge0\) => 3x2+5y2\(\ge\)0.Dấu "=" xảy ra khi x=y=0