Δ=(-2)^2-4(1-3m)
=4-4+12m=12m
Để PT có hai nghiệm thì 12m>=0
=>m>=0
Theo đề, ta có: \(x_1^2+x_2^2=3\)
=>\(\left(x_1+x_2\right)^2-2x_1x_2=3\)
=>\(2^2-2\left(1-3m\right)=3\)
=>4-2+6m=3
=>6m=1
=>m=1/6
Δ=(-2)^2-4(1-3m)
=4-4+12m=12m
Để PT có hai nghiệm thì 12m>=0
=>m>=0
Theo đề, ta có: \(x_1^2+x_2^2=3\)
=>\(\left(x_1+x_2\right)^2-2x_1x_2=3\)
=>\(2^2-2\left(1-3m\right)=3\)
=>4-2+6m=3
=>6m=1
=>m=1/6
cho phương trình : x2 - (m+1) +m - 2 =0 (1)
tìm m để :
a) phương trình (1) có 2 nghiệm x1,x2 là độ dài 2 cạnh góc vuông có cạnh huyền bằng 10
b) phương trình (1) có 2 nghiệm x1, x2 sao cho biểu thức P= | x1 -x2 | đạt giá trị nhỏ nhất
1. Tìm \(m\in\left[-10;10\right]\) để pt \(\left(x^2-2x+m\right)^2-2x^2+3x-m=0\) có 4 ng pb
2. Cho biết x1,x2 là nghiệm của pt \(x^2-x+a=0\) và x3,x4 là nghiệm của pt \(x^2-4x+b=0\) . Biết rằng \(\dfrac{x2}{x1}=\dfrac{x3}{x2}=\dfrac{x4}{x3}\), b >0 . Tìm a
Tìm m để: 2x2 + (m - 6)x - m2 - 3m = 0 có 2 nghiệm phân biệt x1, x2 thoả mãn: 1<x1<x2
cho phương trình : \(x^2+2mx+4=0\)
Tìm m để pt có 2 nghiệm x1,x2 thỏa mãn : \(\left(\dfrac{x1}{x2}\right)^2+\left(\dfrac{x2}{x1}\right)^2=3\)
Tìm m để: x2 - 2(2m + 1)x + 3m2 + 6m = 0 có 2 nghiệm x1, x2 thoả mãn: x1 + 2x = 16
Tìm m để: 2x2 + (m - 6)x - m2 - 3m = 0 có 2 nghiệm phân biệt x1, x2 thoả mãn: 1
tìm m để phương trình \(x^{2+}2\left(m-1\right)x+3m-2=0\) có 2 nghiệm trái dấu x1, x2 thỏa mãn \(\dfrac{1}{x_1}-3=\left|\dfrac{1}{x_2}\right|\)
Cho phương trình \(x^2-2mx+4m-6=0\) Tìm giá trị của tham số m để phương trình có hai nghiệm x1,x2 phân biệt thỏa mãn :
a) 0<x1<2<x2
b) 0<x1<x2<2