\(\Leftrightarrow\left(x+1\right)\left(x+2\right)-\left(x-1\right)\left(x-2\right)=2x^2+4\)
\(\Leftrightarrow2x^2+4=x^2+3x+2-x^2+3x-2\)
\(\Leftrightarrow2x^2-6x+4=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\)
=>x=1(nhận) hoặc x=2(loại)
\(ĐKXĐ:x\ne\pm2\)
\(\dfrac{x+1}{x-2}+\dfrac{x-1}{x+2}=\dfrac{2\left(x^2+2\right)}{x^2-4}\)
\(\Leftrightarrow\dfrac{x+1}{x-2}+\dfrac{x-1}{x+2}=\dfrac{2\left(x^2+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow\dfrac{\left(x+1\right)\left(x+2\right)+\left(x-1\right)\left(x-2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(\Leftrightarrow\dfrac{2\left(x^2+2\right)}{\left(x-2\right)\left(x+2\right)}\)
\(\Rightarrow\left(x+1\right)\left(x+2\right)+\left(x-1\right)\left(x-2\right)=2\left(x^2+2\right)\)
\(\Leftrightarrow x^2+x+2x+2+x^2-x-2x+2=2x^2+4\)