`a,3(x-2)^2+9(x-1)=3(x^2+x-3)`
`<=>3(x^2-4x+4)+9x-9=3x^2+3x-9`
`<=>3x^2-12x+12+9x-9=3x^2+3x-9`
`<=>3x^2-3x+3=3x^2+3x-9`
`<=>6x=12`
`<=>x=12`
`b,(x+3)^2-(x-3)=6x+18`
`<=>(x+3-x+3)(x+3+x-3)+6x+18`
`<=>6.2x=6(x+3)`
`<=>2x=x+3`
`<=>x=3`
`c,(2x+7)^2=9(x+2)^2`
`<=>(2x+7)^2=(3x+6)^2`
`<=>(3x+6-2x-7)(3x+6+2x+7)=0`
`<=>(x-1)(5x+13)=0`
`<=>` $\left[ \begin{array}{l}x-1=0\\5x+13=0\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=1\\5x=-13\end{array} \right.$
`<=>` $\left[ \begin{array}{l}x=1\\x=-\dfrac{13}{5}\end{array} \right.$
a) Ta có: \(3\left(x-2\right)^2+9\left(x-1\right)=3\left(x^2+x-3\right)\)
\(\Leftrightarrow3\left(x^2-4x+4\right)+9x-9=3x^2+3x-9\)
\(\Leftrightarrow3x^2-12x+12+9x-9-3x^2-3x+9=0\)
\(\Leftrightarrow-6x+12=0\)
\(\Leftrightarrow-6x=-12\)
hay x=2
Vậy: x=2