TH1: x>=1
BPt sẽlà x-1<x+1
=>-1<1(luôn đúng)
TH2: x<1
BPt sẽ là 1-x<x+1
=>-2x<0
=>x>0
=>0<x<1
TH1: x>=1
BPt sẽlà x-1<x+1
=>-1<1(luôn đúng)
TH2: x<1
BPt sẽ là 1-x<x+1
=>-2x<0
=>x>0
=>0<x<1
giải các bpt sau
a,\(\dfrac{x^2+2x-13}{x-1}< 1\)
b,\(\dfrac{3x^2+x-4}{x-1}< 3\)
c,\(\dfrac{2x^2-3x+1}{x+2}>0\)
d,\(\dfrac{x^2-x-6}{x^2-1}\le1\)
x+1/x-1 +2<hoặc +x-1/x
Câu 1:giải các bất phương trình sau
a |x²-2x|<= 3
b |x²-2x|>3
c |x²-2x|<=x²+1
d |x²-2x|>=x-2
e -x²+5x-4/(2x+1)(-x+3)>=0
f -x²+5x+6/(-2x+2)(x+3)<=0
g (-x²+5x-4)(x-2)/x²+5x+6>0
Câu 2:
a (m-1)x²+2(m+1)x+3m+3>0 nghiệm đúng với mọi x €R
b (m-1)x²+2(m+1)x+3m+3<=0 nghiệm đúng với mọi x€R
c (m+1)x²+2(m-1)x-3m+3>= vô nghiệm
d (m+1)x²+2(m-1)x-3m+3<0 vô nghiệm
Bài 3: Xét dấu các biểu thức sau 1/ f(x) = (2x - 1)(x ^ 3 - 1)
. 2 / (f(x)) = (- 2x ^ 2 + 7x + 7)/(x ^ 2 - 3x - 10) - 1
Giải hệ bpt
1) \(-4\le\dfrac{x^2-2x-7}{x^2+1}\le1\)
2) \(\dfrac{1}{13}\le\dfrac{x^2-2x-2}{x^2-5x+7}\le1\)
3) \(-1< \dfrac{10x^2-3x-2}{-x^2+3x-2}< 1\)
1.Cho x, y ,z là 3 số dương thỏa mãn xy + yz + zx = 3 . CMR:
\(\frac{1}{1+x^2\left(y+z\right)}+\frac{1}{1+y^2\left(z+x\right)}+\frac{1}{1+z^2\left(x+y\right)}\le\frac{1}{xyz}\)
2. Cho biểu thức \(f\left(x\right)=\frac{\left(2-m\right)x^2+2\left(m-2\right)x-3m+1}{-4x^2+12x-10}\)
a. Tìm m để f(x) =0 có 2 nghiệm pb
b. tìm m để f(x) > 0 với mọi x ∈ R
Câu 1: Xét dấu:
a, f(x)= (x2+3x+2)(x+4)
b, f(x)= \(\frac{x+1}{\left(x^2+1\right)\left(4-x^2\right)}\)
Câu 2: Giải bất phương trình:
a, (2x+3)(x2-x-2)≥0
b, \(\frac{x+3}{\left(x^2-1\right)}\)≥0
c, \(\frac{x}{x+1}\)≥2x
1>\(\dfrac{3x}{\sqrt{1-x^2}}+\dfrac{1}{x^2-1}\)
giải bất phương trình
a/\(\frac{x^4-x^2}{x^2+5x+6}\le0\)
b/\(\frac{4x^2+3x-1}{x^2+5x+7}>0\)
c/\(\frac{x^4+x^2+1}{x^2-4x-5}\le0\)
d/\(\frac{-2x^2+7x+7}{x^2-3x-10}\le-1\)
e/\(\frac{2\left(x-4\right)}{\left(x-1\right)\left(x-7\right)}\ge\frac{1}{x-2}\)