\(A=\sum\frac{2x}{2\sqrt{y+z-4}}\ge\sum\frac{4x}{y+z}=4\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\ge6\)
\(A=\sum\frac{2x}{2\sqrt{y+z-4}}\ge\sum\frac{4x}{y+z}=4\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}\right)\ge6\)
cho các số thực x, y, z >2
tìm gtnn \(P=\frac{x}{\sqrt{y+z-4}}+\frac{y}{\sqrt{z+x-4}}+\frac{z}{\sqrt{x+y-4}}\)
Cho x,y,z > 0. Chứng minh : \(\frac{\sqrt{y+z}}{x}+\frac{\sqrt{x+z}}{y}+\frac{\sqrt{x+y}}{z}\)≥\(\frac{4\left(x+y+z\right)}{\sqrt{\left(x+y\right)\left(y+z\right)\left(z+x\right)}}\)
cho x,y,z > 0 , xyz = 1. Tìm GTNN của: \(A=\frac{x^2\left(y+z\right)}{y\sqrt{y}+2z\sqrt{z}}+\frac{y^2\left(z+x\right)}{z\sqrt{z}+2x\sqrt{x}}+\frac{z^2\left(x+y\right)}{x\sqrt{x}+2y\sqrt{y}}\)
Cho x,y,z>0 thỏa mãn x+y+z=18√2
CM: \(\frac{1}{\sqrt{x\left(y+z\right)}}+\frac{1}{\sqrt{y\left(z+x\right)}}+\frac{1}{\sqrt{z\left(x+y\right)}}\ge\frac{1}{4}\)
1) Chứng minh : \(x^2+y^2\)≥\(2x\sqrt{yz}\) Với mọi x,y,z >0
2) Cho x+y+z = 2019 ;x,y,z >0
Tìm GTNN của P = \(\frac{x}{x+\sqrt{2019x+yz}}+\frac{y}{y+\sqrt{2019y+xz}}+\frac{z}{z+\sqrt{2019z+xy}}\)
Tìm GTNN của các biểu thức sau:
1) Cho x,y >0
Tìm Min P= \(\frac{x+y}{\sqrt{xy}}+\frac{\sqrt{xy}}{x+y}\)
2) Cho x, y, z >0 và x+y+z ≤ \(\frac{3}{4}\)
Tìm Min P= \(\left(\sqrt{x}+\sqrt{y}\right)\left(\sqrt{y}+\sqrt{z}\right)\left(\sqrt{z}+\sqrt{x}\right)\)+ \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)
3) Cho a,b >0 và a+b≥3
Tìm Min P=\(a+b+\frac{1}{2a}+\frac{2}{b}\)
Giải phương trình:
\(a)\sqrt{x^2+2x+4}\ge x-2\\ b)x=\sqrt{x-\frac{1}{x}}+\sqrt{x+\frac{1}{x}}\\ c)\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2\sqrt{2x-5}}\\ d)x+y+z+4=2\sqrt{x-2}+4\sqrt{y-3}+6\sqrt{z-5}\\ e)\sqrt{x}+\sqrt{y-1}+\sqrt{z-2}=\frac{1}{2}\left(x+y+z\right)\)
Giả sử x, y, z là những số thực lớn hơn 2. Tìm giá trị nhỏ nhất của biểu thức: \(P=\frac{x}{\sqrt{y+z-4}}+\frac{y}{\sqrt{z+x-4}}+\frac{z}{\sqrt{x+y-4}}\)
Giải hệ: \(\left\{{}\begin{matrix}\sqrt{x}+\sqrt{y}+\sqrt{z}-\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{y}}-\frac{1}{\sqrt{z}}=\frac{8}{3}\\x+y+z+\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{118}{9}\\x\sqrt{x}+y\sqrt{y}+z\sqrt{z}-\frac{1}{x\sqrt{x}}-\frac{1}{y\sqrt{y}}-\frac{1}{z\sqrt{z}}=\frac{728}{27}\end{matrix}\right.\)