Câu trả lời ở đây: https://dethihsg.com/de-thi-hoc-sinh-gioi-toan-9-phong-gddt-cam-thuy-2011-2012/amp/
Câu trả lời ở đây: https://dethihsg.com/de-thi-hoc-sinh-gioi-toan-9-phong-gddt-cam-thuy-2011-2012/amp/
rút gọn biểu thức A=\(\dfrac{\left(2-\sqrt{a}\right)-\left(\sqrt{a+3}\right)}{1+2\sqrt{a}}\) (với a>0) ; B=\(\dfrac{1}{1-\sqrt{2}+\sqrt{3}}-\dfrac{1}{1-\sqrt{2-\sqrt{3}}}\); C=\(\dfrac{1}{\sqrt{5-2}}+\dfrac{1}{\sqrt{5+\sqrt{2}}}\)
Cho \(F=\left[\dfrac{3\sqrt{a}}{\sqrt{a}+4}+\dfrac{\sqrt{a}}{\sqrt{a}-4}+\dfrac{4\left(a+2\right)}{16-a}\right]:\left(1-\dfrac{2\sqrt{a}+5}{\sqrt{a}+4}\right)\)
a/ Rút gọn
b/ Tìm a thuộc N để F là số nguyên tố
Tính:
M = \(\left(\sqrt{2}-\sqrt{3-\sqrt{5}}\right)\times\sqrt{2}+\sqrt{20}\)
N = \(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right):\dfrac{1}{\sqrt{5}-\sqrt{2}}\)
Cho biểu thức:
P=\(\left[\dfrac{3\sqrt{a}}{\sqrt{a}+4}+\dfrac{\sqrt{a}}{\sqrt{a}-4}+\dfrac{4\left(a+2\right)}{16-a}\right]:\left(1-\dfrac{2\sqrt{a}+5}{\sqrt{a}+4}\right)\)
(với a\(\ge\)0 ; a\(\ne16\))
Tìm các số tự nhiên a để P là số nguyên tố
xét biểu thức : P=\(\left[\dfrac{3\sqrt{a}}{\sqrt{a}+4}+\dfrac{\sqrt{a}}{\sqrt{a}-4}+\dfrac{4\left(a+2\right)}{16-a}\right]:\left(1-\dfrac{2\sqrt{a}+5}{\sqrt{a}+4}\right)\)
1, rút gọn P
2,tìm a để P=-3
3, tìm các số tự nhiên a để P là số nguên tố
Chứng minh các đẳng thức sau:
a) \(\left(1+\dfrac{x+\sqrt{x}}{\sqrt{x}+1}\right)\left(1-\dfrac{x-\sqrt{x}}{\sqrt{x}-1}\right)=1-x\)
(Với \(x\ge0;x\ne1\))
b) \(\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}+\dfrac{a-b}{\sqrt{a}-b}=2\sqrt{a}\)
(Với a>0; b>0; \(a\ne b\))
Rút gọn pt
a, \(-\dfrac{2}{3}\sqrt{\dfrac{\left(a-b\right)^3.b^5}{c}.\dfrac{9}{4}\sqrt{\dfrac{c^3}{2\left(a-b\right)}}\sqrt{ }98b}\)
b, \(\left(\sqrt{ab}+2\sqrt{\dfrac{b}{a}}-\sqrt{\dfrac{a}{b}+\dfrac{1}{ab}}\right).\sqrt{ab}\)
c, \(\left(\sqrt{b}-3\sqrt{3}+5\sqrt{2}-\dfrac{1}{2}\sqrt{8}\right).2\sqrt{6}\)
d, \(\dfrac{\sqrt{15}-\sqrt{6}}{\sqrt{35}-\sqrt{14}}\)
Rút gọn các biểu thức sau :
a) \(\left(1+\dfrac{3-\sqrt{3}}{\sqrt{3}-1}\right)\left(\dfrac{3+\sqrt{3}}{\sqrt{3}+1}-1\right)\)
b) \(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right):\:\dfrac{1}{\sqrt{5}-\sqrt{2}}\)
c) \(\dfrac{7-4\sqrt{3}}{\sqrt{3}-2}-\dfrac{28-10\sqrt{3}}{5-\sqrt{3}}\)
a, Tính: \(A=\dfrac{2}{2+\sqrt{5}}-\sqrt{9-2\sqrt{20}}+\sqrt[3]{5\sqrt{5}}\)
b, Cho biểu thức: \(B=\left(\dfrac{2}{2\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+2}-\dfrac{2\sqrt{x}}{2x+3\sqrt{x}-2}\right).\dfrac{2\sqrt{x}-\sqrt{x}}{6\sqrt{x}+4}\) với \(\left\{{}\begin{matrix}x\ge0\\x\ne\dfrac{1}{4}\end{matrix}\right.\)