a, Tính: \(A=\dfrac{2}{2+\sqrt{5}}-\sqrt{9-2\sqrt{20}}+\sqrt[3]{5\sqrt{5}}\)
b, Cho biểu thức: \(B=\left(\dfrac{2}{2\sqrt{x}-1}+\dfrac{3}{\sqrt{x}+2}-\dfrac{2\sqrt{x}}{2x+3\sqrt{x}-2}\right).\dfrac{2\sqrt{x}-\sqrt{x}}{6\sqrt{x}+4}\) với \(\left\{{}\begin{matrix}x\ge0\\x\ne\dfrac{1}{4}\end{matrix}\right.\)
a: \(=-4+2\sqrt{5}-\sqrt{5}+2+\sqrt{5}=2\sqrt{5}-2\)
b: \(B=\dfrac{2\sqrt{x}+4+6\sqrt{x}-3-2\sqrt{x}}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+2\right)}\cdot\dfrac{\sqrt{x}}{6\sqrt{x}+4}\)
\(=\dfrac{\left(6\sqrt{x}+1\right)\cdot\sqrt{x}}{\left(2\sqrt{x}-1\right)\left(\sqrt{x}+2\right)\left(6\sqrt{x}+4\right)}\)