Ta có (x-1)(x+2)(x+3)(x+6)
= (x2+6x-x-6)(x2+3x+2x+6)
= (x2+5x-6)(x2+5x+6)
= (x2+5x)2-36≥36( vì (x2+5x)2≥0,36>0)
Vậy Mmin=36⇔x2+5x=0
⇔x(x+5)=0
⇔\(\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\)⇔\(\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)