cho a,b,c là độ dài ba cạnh của tam giác chứng minh rằng :
\(\dfrac{a^2+2bc}{b^2+c^2}+\dfrac{b^2+2ac}{c^2+a^2}+\dfrac{c^2+2ab}{a^2+b^2}>3\)
mọi người giúp mình với
cho a3+b3+c3=3abc. Tính Q=\(\dfrac{a^2}{a^2-b^2-c^2}+\dfrac{b^2}{b^2-c^2-a^2}+\dfrac{c^2}{c^2-a^2-b^2}\)
Cho a,b,c là độ dài ba cạnh của tam giác . Chứng minh rằng :
\(\dfrac{a^2+b^2-c^2}{2ab}+\dfrac{b^2+c^2-a^2}{2bc}+\dfrac{c^2+a^2-b^2}{2ca}>1\)
1. Chứng minh: \(a^6+b^6+c^6\ge a^5b+ac^5+b^5c\) với \(a,b,c\ge0\)
2. Chứng minh rằng: với a,b,c > 0 thì \(\dfrac{a^2}{b^2+c^2}+\dfrac{b^2}{a^2+c^2}+\dfrac{c^2}{a^2+b^2}\ge\dfrac{a}{b+c}+\dfrac{b}{a+c}+\dfrac{c}{a+b}\)
3. Chứng minh rằng: \(8\left(a^3+b^3+c^3\right)\ge\left(a+b\right)^3+\left(b+c\right)^3+\left(c+a\right)^3\) với a,b,c > 0.
4. Cho a,b,c là độ dài 3 cạnh của tam giác. Chứng minh: \(\dfrac{1}{a+b};\dfrac{1}{a+c};\dfrac{1}{b+c}\) là độ dài của tam giác.
Chứng minh rằng nếu a, b, c là độ dài ba cạnh của một tam giác thì: A =4a^2b^2 -(a^2 +b^2 -c^2)^2 luôn luôn dương
Cho a, b. c là độ dài 3 cạnh của một tam giác. Chứng minh rằng: 4b2c2 – (a2 + b2 + c2) > 0
Cho a, b, c là độ dài 3 cạnh của một tam giác. Chứng minh rằng:
a2 + b2 + c2 < 2(ab + bc + ac)
Giúp mình với. Mình tick cho. Thanks các bạn nhiều.
Cho a,b,c là số đo ba cạnh của tam giác
Chứng minh rằng \(1< \dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}< 2\)
Chứng minh rằng:
52005 + 52003 chia hêt cho 13
b) a2 + b2 + 1 ≥ ab + a + b
Cho a + b + c = 0. chứng minh:
a3 + b3 + c3 = 3abc
Các cao nhân giúp em ạ
em cảm ơn trước