Do a<0 nên a>2a
=>0< -a< -2a
=>√(-a)<√(-2a)
Kl....
Do a<0 nên a>2a
=>0< -a< -2a
=>√(-a)<√(-2a)
Kl....
Với các số thực a, b lớn hơn 0 thảo mãn điều kiện \(2a+b\le3\), chứng minh:
\(\dfrac{2}{\sqrt{a+3}}+\dfrac{2}{\sqrt{b+3}}\ge\dfrac{3}{2}\)
1. Tìm GTLN của: \(M=\left(\sqrt{a}+\sqrt{b}\right)^2\) với \(a,b>0\) và \(a+b\le1\)
2. Chmr trong các số: \(2b+c-2\sqrt{ad};2c+d-2\sqrt{ab};2d+a-2\sqrt{bc};2a+b-2\sqrt{cd}\)có ít nhất hai số dương \(\left(a,b,c,d>0\right)\)
Rút gọn :
B=\(\dfrac{2a\sqrt{1+x^2}}{\sqrt{1+x^2}-x}\) với x=\(\dfrac{1}{2}\left(\sqrt{\dfrac{1-a}{a}}-\sqrt{\dfrac{a}{1-a}}\right)\) và 0<a<1
Cho biểu thức P = \(\left(\dfrac{4a}{\sqrt{a}-1}-\dfrac{\sqrt{a}}{a-\sqrt{a}}\right).\dfrac{\sqrt{a}-1}{a^2}\) với a>0 và a \(\ne\)1
a)Rút gọn biểu thức P b)Với giá trị nào của a thì P = 3
với a , b , c là các số dương thỏa mãn điều kiện a + b + c = 2 . Tìm giá trị lớn nhất của biểu thức \(Q=\sqrt{2a+bc}+\sqrt{2b+ca}+\sqrt{2c+ab}\)
Trong hai số: \(\sqrt{n}+\sqrt{n+1}\) và \(2\sqrt{n+1}\) ( n là số nguyên dương), số nào lớn hơn?
Cho hai biểu thức: \(A=\dfrac{\sqrt{x}-3}{2\sqrt{x}+6}\) và \(B=\dfrac{\sqrt{x}-3}{\sqrt{x}+2}\) với \(x\ge0;x\ne4;x\ne9\). Với x là số tự nhiên thỏa mãn: x>3, tìm giá trị lớn nhất của biểu thức \(P=\dfrac{B}{A}\)
Tìm giá trị lớn nhất của biểu thức: \(A=3\sqrt{2a-1}+a\sqrt{5-4a^2}\) với \(\dfrac{1}{2}\le a\le\dfrac{\sqrt{5}}{2}\)
chứng minh rằng \(\sqrt{a^2+b^2}\ge\dfrac{a+b}{\sqrt{2}}\)với mọi a;b lớn hơn hoặc bằng 0