\(ab+bc=2ac\Leftrightarrow\frac{ab+bc}{ac}=2\Leftrightarrow\frac{b}{c}+\frac{b}{a}=2\)
Đặt \(\left(\frac{b}{a};\frac{b}{c}\right)=\left(x;y\right)\Rightarrow x+y=2\)
\(P=\frac{1+\frac{b}{a}}{2-\frac{b}{a}}+\frac{1+\frac{b}{c}}{2-\frac{b}{c}}=\frac{1+x}{2-x}+\frac{1+y}{2-y}=\frac{3+x-2}{2-x}+\frac{3+y-2}{2-y}\)
\(P=3\left(\frac{1}{2-x}+\frac{1}{2-y}\right)-2=3\left(\frac{1}{y}+\frac{1}{x}\right)-2\ge\frac{12}{x+y}-2=4\)
\(P_{min}=4\) khi \(x=y=1\) hay \(a=b=c\)