Từ điểm M nằm ngoài đường tròn (O) vẽ hai tiếp tuyến MA, MB (A và B là hai tiếp điểm) và cát tuyến MEK (tia ME nằm giữa hai tia MO và MA). a) Chứng minh:
MEA = MAK
Từ điểm M nằm ngoài đường tròn (O;R) vẽ hai tiếp tuyến MA và MB đến (O)( A,B là hai tiếp điểm). Gọi MCD là cát tuyến của (O) (C nằm giữa M và D; tia MD nằm trong ∠OMB). Vẽ OE vuông góc với CD tại E.
Chứng minh: tứ giác MAEB nội tiếp đường tròn tâm I, xác định tâm I của đường tròn này.
Cho điểm M nằm ngoài đường tròn (O;R). Vẽ tiếp tuyến MA (A là tiếp điểm), cát tuyến MBC (B nằm giữa M và C) và O nằm trong góc AMC. Gọi I là trung điểm của BC. Tia OI cắt cung nhỏ BC tại N, AN cắt BC tại D
a) Cm AD là phân giác của góc BAC
b) Cm MD2 = MB. MC
c) Gọi H, K là hình chiếu của N lên AB và AC. Chứng minh ba điểm H,I,K thẳng hàng
cho đường tròn O và điểm M nằm ngoài đường tròn O . từ điểm M vẽ 2 tiếp tuyến MA ,MB của đường tròn . từ điểm M vẽ 2 tiếp tuyến MA , MB của đường tròn O .gọi H là giao điểm của MO và AB .Qua M vẽ cát tuyến MCD của đường tròn O (, D thuộc đường tròn O) sao cho đường thẳng MD cắt đoạn thẳng HB . gọi I là trung điểm dây cung CD
A/ chứng minh OI vuông góc CD tại I và tứ giác MAOI nội tiếp
B/ chứng minh MA2 =MC.MD và tứ giác OHCD nội tiếp
C/ trên cung nhỏ AD lấy điểm N sao cho DN=BD . qua C vẽ đường thẳng song song với DN cắt đường thẳng MN tại E và cũng qua C vẽ đường thẳng song song viws BD cắt cạnh A tại F . chứng minh CEF cân
câu này hơi dài , cảm ơn mấy bạn vì công đọc , sai thì thôi, đúng thì ok , nhưng cảm ơn mn vì đọc cái bài dài này nhá :))
Bài 13 Từ điểm M nằm ngoài đường tròn tâm O, vẽ hai tiếp tuyến MA, MB (A, B là các tiếp điểm) và cát tuyến MCD không đi qua O (C nằm giữa M và D) của đường tròn tâm O. Đoạn thắng OM cắt AB và (O) theo thứ tự tại H và I. Chứng minh rằng: a) Tứ giác MAOB là tứ giác nội tiếp và MC.MD = OM^2 - R^2 b) Bốn điểm O, H, C, D thuộc một đường tròn.
Từ một điểm M nằm ngoài đường tròn (O;R). Vẽ hai tiếp tuyến MA,MB ( A,B là tiếp điểm) và một cát tuyến M cắt đường tròn tại C,D (C nằm giữa M và D). Gọi E là giao điểm của AB và OM. 1, Chứng minh MC.MD=ME.MO 2, giả sử OM=3R. Tìm diện tích lớn nhất của túe giác MADB
Cho điểm M nằm ngoài đường tròn tâm O.Kẻ hai tiếp tuyết MA và MB ( A, B là tiếp điểm ) và một cát tuyến MCD nằm giữa MO và MA ( MC<MD )với đường tròn. Lấy điểm I thuộc đoạn AB ( IB< IA ), I không thuộc cát tuyến MCD. Kẻ OH vuông MI tại H
a/ C/m : H , O , M , B , A cùng thuộc 1 đường tròn
Từ điểm M nằm ngoài (O) kẻ hai tiếp tuyến MA và MB với đường tròn (A, B là tiếp điểm). MO cắt AB tại I. Kẻ đường kính BC của đường tròn, MC cắt đường tròn tại điểm thứ hai là K.
a) Chứng minh I là trung điểm AB.
b) Chứng minh \(MA^2=MK.MC\) và \(\Delta MKI\) đồng dạng với \(\Delta MOC\)
c) Lấy điểm D trên cung lớn AB (DB < DA), kẻ \(BH\perp AD\) tại H. Gọi E là giao điểm của MO với (O). Qua D kẻ đường thẳng vuông góc với ED cắt tia BH tại P. Chứng minh: \(BP.OA=HP.OM\)
Từ điểm M cố định nằm ngoài đường tròn (O) vẽ hai tiếp tuyến MA, MB (A và B
là hai tiếp điểm). Điểm I thuộc cung nhỏ AB (I khác A và B). Tiếp tuyến tại I của đường
tròn (O) cắt MA, MB lần lượt ở E và K.
a) Chứng minh: chu vi tam giác MEK có giá trị không đổi khi I di
động trên cung nhỏ AB.