Bài 13 Từ điểm M nằm ngoài đường tròn tâm O, vẽ hai tiếp tuyến MA, MB (A, B là các tiếp điểm) và cát tuyến MCD không đi qua O (C nằm giữa M và D) của đường tròn tâm O. Đoạn thắng OM cắt AB và (O) theo thứ tự tại H và I. Chứng minh rằng: a) Tứ giác MAOB là tứ giác nội tiếp và MC.MD = OM^2 - R^2 b) Bốn điểm O, H, C, D thuộc một đường tròn.
Cho điểm M nằm ngoài đường tròn (O). Vẽ tiếp tuyến MA, MB với (O) (A, B là các tiếp điểm). Vẽ cát tuyến MCD không đi qua tâm O (C nằm giữa M và D), OM cắt AB và (O) lần lượt tại H và I. Chứng minh:
1) Tứ giác MAOB nội tiếp
2)\(MA^2=MC.MD\)
3) OH.OM + MC.MD =\(MO^2\)
4)CI là phân giác của góc MCH
cho M nằm ngoài (O) từ M kẻ 2 tiếp tuyến MA,MB với đường tròn, vẽ cát tuyến MCD không đi qua tâm
a)chứng minh các điểm M,A,O,B cùng thuộc một đường tròn và MO vuông góc với AB tại H
b) chứng minh MA.AD=MD.AC
c) gọi I là trung điểm của CD và E là giao điểm của AB và OI. chứng minh rằng: tứ giác OECH nội tiếp
Cho đường tròn (O) cố định và điểm M cố định nằm ngoài (O). từ M kể các tiếp tuyến MA, MB đến (O) (A, B là các tiếp điểm) và vẽ cát tuyến MIJ không đi qua tâm O,( I,J ∈ (O), I nằm giữa M và J). CMR tứ giác MAOB nội tiếp ( Vẽ hình)
(mink đag cần gấp)
Cho điểm M nằm ngoài đường tròn tâm O.Kẻ hai tiếp tuyết MA và MB ( A, B là tiếp điểm ) và một cát tuyến MCD nằm giữa MO và MA ( MC<MD )với đường tròn. Lấy điểm I thuộc đoạn AB ( IB< IA ), I không thuộc cát tuyến MCD. Kẻ OH vuông MI tại H
a/ C/m : H , O , M , B , A cùng thuộc 1 đường tròn
Từ điểm M nằm ngoài đường tròn (O) vẽ hai tiếp tuyến MA, MB (A và B là hai tiếp
điểm) và cát tuyến MEK (tia ME nằm giữa hai tia MO và MA).
Gọi I là trung điểm của EK. Tia OI cắt tia HA ở điểm S.
Chứng minh:SE là tiếp tuyến của đường tròn (O)
Từ một điểm M nằm ngoài đường tròn (O;R). Vẽ hai tiếp tuyến MA,MB ( A,B là tiếp điểm) và một cát tuyến M cắt đường tròn tại C,D (C nằm giữa M và D). Gọi E là giao điểm của AB và OM. 1, Chứng minh MC.MD=ME.MO 2, giả sử OM=3R. Tìm diện tích lớn nhất của túe giác MADB
Cho đường tròn tâm O, bán kính R. Từ điểm M nằm ngoài đường tròn vẽ các tiếp tuyến MA, MB ( A, B thuộc (O)). Vẽ cát tuyến MCD không đi qua O (C nằm giữa M và D). Gọi H là trung điểm dây CD
a. CM các điểm M,A,O,H,B cùng thuộc 1 đg tròn
b. CM: MC.MD=MO2-R2
c. Tia BH cắt (O) tại F. CM AF song song CD
cho đường tròn O và điểm M nằm ngoài đường tròn O . từ điểm M vẽ 2 tiếp tuyến MA ,MB của đường tròn . từ điểm M vẽ 2 tiếp tuyến MA , MB của đường tròn O .gọi H là giao điểm của MO và AB .Qua M vẽ cát tuyến MCD của đường tròn O (, D thuộc đường tròn O) sao cho đường thẳng MD cắt đoạn thẳng HB . gọi I là trung điểm dây cung CD
A/ chứng minh OI vuông góc CD tại I và tứ giác MAOI nội tiếp
B/ chứng minh MA2 =MC.MD và tứ giác OHCD nội tiếp
C/ trên cung nhỏ AD lấy điểm N sao cho DN=BD . qua C vẽ đường thẳng song song với DN cắt đường thẳng MN tại E và cũng qua C vẽ đường thẳng song song viws BD cắt cạnh A tại F . chứng minh CEF cân
câu này hơi dài , cảm ơn mấy bạn vì công đọc , sai thì thôi, đúng thì ok , nhưng cảm ơn mn vì đọc cái bài dài này nhá :))