trong mặt phẳng tọa độ Oxy cho đường thẳng d: 2x-y+3=0, điểm A có tọa độ (1;0), điểm B có tọa độ (2;1). tìm trên d điểm M sao cho MA+MB nhỏ nhất
trong mặt phẳng toạ độ Oxy cho điểm M(3;1).Viết phương trình đường thẳng d đi qua M cắt Ox và Oy tại A và B sao cho OA+3OB nhỏ nhất
Trong mặt phẳng tọa độ Oxy , cho điểm I(2;1). Tìm tọa độ các điểm A,B tương ứng thuộc các tia Ox, Oy sao cho tổng IA+IB+AB có độ dài nhỏ nhất.
Trong mặt phẳng tọa độ Oxy, cho hai đường thẳng \(\left(d_1\right):y=2x+m;\left(d_2\right):y=\left(m^2+1\right)x-1\) (Với m là tham số)
a) Tìm m để d1 cắt Ox ở A, cắt Oy ở B (A và B khác O) sao cho \(AB=2\sqrt{5}\)
b) Tìm tọa độ giao điểm C của d1 và d2 khi m=2
a.trong mặt phẳng tọa độ Oxy, đường thẳng y=ax+b đi qua điểm m(-1;2) và song song với đường thẳng y=3x+1. tìm hệ số a và b
b.trong hệ trục tọa độ Oxy biết đường thẳng y=ax-1 đi qua điểm M(-1;1) tìm hệ số a
Cho mặt phẳng Oxy cho parabol (P): y=\(\frac{1}{2}x^2\)
a) Vẽ đồ thị (P)
b) Trên (P) lấy điểm A có hoành độ \(x_A\)=-2. Tìm tọa độ điểm M trên trục Õ sao cho \(|MA-MB|\) đạt giá trị lớn nhất, biết rằng B(1;1)
Trong mặt phẳng tọa độ Oxy , cho parabol (P) : y= -1/2 x^2
a) Vẽ parabol (P)
b) Gọi M là điểm thuộc (P) có hoành độ xM = 2 . Viết pt đường thẳng đi qua M và cắt hai trục tọa độ tại 2 điểm A và B sao cho OA =OB
Trên mặt phẳng tọa độ Oxy cho parabol (P): y=x2 và đường thẳng (d): y=2mx+1 (m là tham số).Tìm tất cả các giá trị của m để(d) cắt (P) tại hai điểm phân biệt A, B sao cho OI= căn 10,với I là trung điểm của đoạn thẳng AB.