Lời giải:
Quay tam giác $ABC$ quanh cạnh $AB$ , ta thu được hình nón có độ dài bán kính đáy là $AC$, đường sinh là $BC$
Xét tam giác $ABC$ vuông tại $A$ có:
\(\cos \angle ACB=\frac{AC}{BC}=\cos 60=\frac{1}{2}\)
\(\Rightarrow BC=2AC=2a\)
Diện tích xung quanh của hình nón là:
\(S_{xq}=\pi rl =\pi . AC. BC=2\pi a^2\)
Diện tích đáy: \(S_{đ}=\pi r^2=\pi a^2\)
Do đó diện tích toàn phần của hình nón là:
\(S_{tp}=S_{xq}+S_{đ}=3\pi a^2\)