gọi thiết diện là tam giác đềuSAB (S chính là đỉnh hình nón,do thiết diện đi qua trục
R=0,5.AB=\(\sqrt{2}\)a
S=πRl=π\(\sqrt{2}\)a.2 \(\sqrt{2}\)a=4\(a^2\)
gọi thiết diện là tam giác đềuSAB (S chính là đỉnh hình nón,do thiết diện đi qua trục
R=0,5.AB=\(\sqrt{2}\)a
S=πRl=π\(\sqrt{2}\)a.2 \(\sqrt{2}\)a=4\(a^2\)
Trong không gian cho tam giác vuông OIM vuông tại I, góc OMI bằng 60 độ và cạnh IM bằng 2a. Khi quay tam giác OIM quanh cạnh góc vuông OI thì đường gấp khúc OMI tạo thành một hình nón tròn xoay có diện tích xung quanh là:
Trong không gian cho tam giác vuông OIM vuông tại I, góc OMI bằng 60 độ và cạnh IM bằng 2a. Khi quay tam giác OIM quanh cạnh góc vuông OI thì đường gấp khúc OMI tạo thành một hình nón tròn xoay có diện tích xung quanh là:
1. Thiết diện qua trục của một hình nón là một tam giác vuông cân có diên tích bằng 4. Diên tích xung quanh của hình nón??
2.Thiết diện qua trục của một hình nón là một tam giác vuông cân có cạnh huyền bằnG \(2\sqrt{3}\) . Thể tích của khối nón??
Có một quả bóng hình cầu đặc đường kính 20cm được đặt đứng yên trên mặt phẳng nằm ngang. Người ta lấy một chiếc nón úp vào quả bóng thì thấy đáy nón vừa chạm với mặt phẳng nằm ngang và các đường sinh của mặt nón cũng vừa tiếp xúc với bề mặt của quả bóng. Biết rằng độ rộng của góc ở đỉnh nón là \(60^0\). Tính thể tích của khối nón giới hạn bởi chiếc nón và mặt phẳng nằm ngang và tính phần không gian bên trong khối nón mà không bị quả bóng chiếm chỗ
1. Diện tích toàn phần của hình nón có khoảng cách từ tâm của đáy đến đường sinh bằng \(\sqrt{3}\). Thiết diện qua trục tam giác đều là??
2.Cho hình nón tam giác đều S.ABC có cạnh đáy bằng a và góc giữa cạnh bên và đáy bằng 60 độ , diện tính xung quanh của hình nón đinh S và đáy là hình tròn ngoại tiếp??
3. Thiết diện qua trục của một tam giác vuông cân có cạnh góc vuông bằng a. Một thiết diện qua đỉnh tạo với đáy một góc 60 độ. Diện tích của thiết diện bằng??
cho hình nón có bán kính đáy R, góc giữa đường sinh và đáy của hình nón là anpha. một mặt phẳng (P) sog song với đáy của hình nón, cách đáy hình nón một khoảng h, cắt hình nón theo đường tròn (C). tính bán kính đtron (C) theo R,h và anpha
Trong không gian cho hình chữ nhật ABCD có AB=1, AD=2. Gọi M,N lần lượt là trung điểm của AD và BC. Quay hình chữ nhật đó xung quanh trục MN, ta được một hình trụ. Tính diện tích toàn phần của hình trụ đó.
Trong không gian cho hình chữ nhật ABCD có AB=1, AD=2. Gọi M,N lần lượt là trung điểm của AD và BC. Quay hình chữ nhật đó xung quanh trục MN, ta được một hình trụ. Tính diện tích toàn phần của hình trụ đó.
Trong không gian cho hình chữ nhật ABCD có AB = 3a, BC = 2a. Quay hình chữ nhật ABCD xung quanh trục Δ là trung trực của đoạn BC ta được khối trụ có thể tích V bằng bao nhiêu?