Phương trình hoành độ giao điểm: \(x^2-2mx-2=0\)
Do \(ac=-2< 0\Rightarrow\) d luôn cắt (P) tại 2 điểm có hoành độ trái dấu lần lượt là \(A\left(x_A;y_A\right)\) và \(B\left(x_B;y_B\right)\) trong đó \(x_A< 0\), \(x_B>0\)
Theo Viet: \(\left\{{}\begin{matrix}x_A+x_B=2m\\x_Ax_B=-2\end{matrix}\right.\)
Gọi \(C\left(x_A;0\right)\) và \(D\left(x_B;0\right)\) là 2 điểm thuộc trục hoành thì ABDC là hình thang vuông tại C và D, các tam giác OAC và ODB vuông.
\(\Rightarrow S_{OAB}=S_{ABDC}-S_{OAC}-S_{OBD}=\frac{3}{2}\)
\(\Rightarrow\left(AC+BD\right).CD-AC.OC-BD.OD=3\)
\(\Leftrightarrow\left(y_A+y_B\right)\left(x_B-x_A\right)-y_A\left(x_O-x_A\right)-y_B\left(x_B-x_O\right)=3\)
\(\Leftrightarrow y_Ax_B-x_Ay_B=3\)
\(\Leftrightarrow\left(mx_A+1\right)x_B-x_A\left(mx_B+1\right)=3\)
\(\Leftrightarrow x_B-x_A=3\)
Kết hợp Viet ta có hệ: \(\left\{{}\begin{matrix}x_A+x_B=2m\\x_B-x_A=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_B=m+\frac{3}{2}\\x_A=m-\frac{3}{2}\end{matrix}\right.\)
\(\Rightarrow\left(m-\frac{3}{2}\right)\left(m+\frac{3}{2}\right)=-2\)
\(\Rightarrow m^2-\frac{9}{4}=-2\)
\(\Rightarrow m=\pm\frac{1}{2}\)